
COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

11

IIIIINTRODUCNTRODUCNTRODUCNTRODUCNTRODUCTIONTIONTIONTIONTION

This chapter provides:

◆ A “welcome” to Clarion for Windows.

◆ An overview of what you'll find in the User’s Guide.

◆ A guide to the information covered in the other books included with
Clarion for Windows.

◆ Typeface and other document conventions.

◆ A reminder about product registration.

◆ A summary of our technical support programs.

◆ Information about Clarion's fax-back system for quick technical
support.

WELCOME TO THE FAST TRACK FOR WINDOWS APPLICATION DEVELOPMENT

Welcome to Clarion for Windows. You have just purchased what
TopSpeed Corporation believes is the most powerful Windows
application development tool on the market! You can now build
sophisticated Windows applications faster than you ever thought
possible. This revolutionary development environment will dramatically
increase your productivity. The executable programs you create with it
run as fast as those tediously crafted in languages such as C, and you can
connect to practically any existing database effortlessly.

You now have both a flexible Rapid Application Development (RAD)
platform, and the power of the underlying Clarion language to create
complex Windows applications. Its Point and Click development process
removes you from the complexity and tedium of typical Windows
programming platforms.

CHAPTER 1 INTRODUCTION

Clarion for Windows' Application Generator builds fully customized
Windows programs in a fraction of the time other programming
environments require, yet makes coding optional. The template driven
environment provides extensive code reusability without the steep
learning curve of object oriented programming.

The underlying Clarion language is a powerful yet easy to understand
business oriented fourth generation programming language. Combined
with our high performance database drivers, Clarion for Windows
delivers the shortest development cycle and fastest executable for your
project.

◆ Template Driven Rapid Application Development

Pre-written standard procedures—templates—provide customizable,
reusable support for a wide range of functions such as browsers,
forms, and reports. Just pick a template from a list, and fill in the
prompts.

The templates are fully customizable to the way you want your
applications to be. You can easily add your own, or add other third
party templates to your template suite!

◆ WYSIWYG (What You See Is What You Get) Formatters

Use on-screen formatters to edit or add window and report controls
to the template defaults. Easily customize list boxes, automatically
associate database fields with entry controls, and choose actions for
standard menu items, as you integrate them into the application.

Essential procedures such as data validation and referential integrity
checks, time-consuming tasks on other platforms, are coded for you
automatically. Windows development projects which normally take
months using other tools take a fraction of the time with Clarion.

◆ Immediate Results—Build Your Application in 1 Hour

Clarion for Windows' Quick Start Wizard, Quick Load, and all the
Procedure Wizards will build a dictionary, choose templates, then
create an application for updating, maintaining and reporting data
within 60 minutes after you tear the shrink wrap off this package.
You’ll create the Quick Start Tutorial application in chapter three of
Getting Started without writing a single line of code.

◆ 4GL Development—C Performance

Unlike other RAD platforms, the executables you build with Clarion
for Windows are fast. The TopSpeed compiler technology produces
true Windows executables that fly.

The Clarion language has the power and flexibility to support any

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

application development project. It's a structured, compact,
extensible language that supports the best of component-oriented
development. Use Visual Basic Custom Controls (.VBX's) in your
application. Create dynamic link libraries which applications written
in other languages can call.

For "hand-coders"—those writing applications with the Clarion
language from scratch, rather than using templates—the
development environment provides a wealth of tools. Window and
Report formatters let you switch between graphically editing
windows and reports, or editing their data structure declarations as
text. The Text Editor provides color syntax highlighting. The Project
Editor compiles and links at top speed with TopSpeed compilers, and
the world-class Clarion Debuggers help your project reach
perfection.

◆ Database Independence

New high performance database drivers, rewritten as dyna-link
libraries, support popular databases and accounting packages;
including Xbase formats, Clipper, FoxPro, Btrieve, and others. On a
local drive, they're far faster than the extra ODBC layer many
Windows database applications use (which Clarion for Windows
supports as well).

Store your data in (or convert existing data to) our new TopSpeed file
format for incredibly fast performance. It's efficient too; you can
store multiple data files inside one physical DOS file, saving
unnecessary use of end user file handles.

WHAT YOU’LL FIND IN THIS BOOK

The User’s Guide shows you how to create applications using the
Clarion for Windows development environment. It focuses on the
development environment interface, tools, and templates. In other words,
the User’s Guide shows you how to build applications largely without
writing code. The following lists the parts of this book and summarizes
their content:

Introduction The chapter you’re reading now.

Setup Lists system requirements and provides
installation instructions.

CHAPTER 1 INTRODUCTION

Development Flow An introduction to Clarion, describing the
functional parts of the development
environment, and an overview of the steps you
take to create your applications.

Dictionary Editor Introduces the concept of the data dictionary
which defines the application’s data files, their
fields, keys, and much more. Clarion provides
automatic entry options and data validity
checking which saves many lines of code, via
the data dictionary.

Application Generator Describes the Application Generator, with which
you design and generate code for your
application’s procedures and functions. Use the
Application Generator by choosing procedure
templates which most closely match your
requirements, then customize them with your
own controls, data, formulas, and embedded
source.

Procedure Templates Describes the procedure templates, their uses
and how to incorporate them into your
applications.

Other Templates Describes the control, code, and extension
templates as well as their uses and how to
incorporate them into your applications.

Window Formatter Describes how to use the Formatter to visually
set the properties of your application windows,
including size, appearance, menus and controls.
The Window Formatter also allows you to add
controls from Visual Basic (VBX) libraries.

Menu Editor You access the Menu Editor through the
Window Formatter. It allows you to create
menus for your application. This chapter also
explains how to create tool bars for your
application.

Controls Controls are the user interface elements you
place in the application using the Window
Formatter, Report Formatter, and Text Editor.
These include entry fields, push buttons and
graphical elements such as bitmaps. This
chapter shows you how to customize each type
of control.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

List Formatter Describes how to use the list box formatter to
customize the appearance of your list box
controls. It also provides instructions on adding
functionality such as drag and drop to list box
controls.

Report Formatter The Report Formatter is the main means of
creating reports with Clarion. You can place
controls in the report in the same manner you
place controls in a window. This chapter
describes how to build reports for your
applications.

Text Editor Describes how to directly edit your source code
files. The Text Editor features color coded
syntax highlighting as well as other programmer
conveniences, such as Search and Replace.

Formula Editor Describes how to use the Formula Editor to
quickly generate a statement assigning an
expression to a value.

Project System The Project System manages the compile and
link process for your application. This chapter
walks you through setting up a new project and
explains the components of the project tree. This
section also provides information on the files
you need to distribute with your finished
applications.

Debugger Describes how to use the Clarion Debuggers to
eliminate bugs from your programs.

Database Manager Describes how to use this programmer’s tool to
directly access data files without having to
produce an application.

Appendices Provides additional information on subjects
related to but not integral parts of the Clarion for
Windows development environment. These
include a discussion of Windows design issues,
file driver specifications, Multi-Programmer
development, Open Database Connectivity
(ODBC), plus a glossary.

CHAPTER 1 INTRODUCTION

WHERE TO FIND MORE INFORMATION

There are four books, plus extensive on-line help for Clarion for
Windows.

◆ The Getting Started manual provides two step by step tutorials. The
first uses the Clarion for Windows Quick Start Wizard to create an
application quickly. The second provides a more extensive walk
through the development environment, creating an Order Entry
system.

◆ The User’s Guide is the book you’re reading now. It provides a task-
oriented description of the development environment, arranged by its
major components. It describes the templates that ship with this
product, and provides additional appendices with information on
topics such as the Clarion for Windows file drivers.

◆ The Language Reference is the complete guide to the Clarion
language. It provides descriptions of all statements and functions,
with examples for each. The Language Reference is organized by
functional topics.

◆ The Template Language Reference documents the Clarion Template
Language, clearly demonstrating how to write your own templates.
To obtain a printed copy of the Template Language Reference, please
see the product registration card.

◆ The on-line hypertext help appears when you press the F1 key, a
Help button, or choose one of the commands on the Help menu. The
on-line help is arranged by dialog box, to provide you with the
precise help text, when you need it.

The full text of the Language Reference is also on-line. When
working with the Text Editor, place the insertion point on a Clarion
language statement or function, then press the F1 key to view help
for the item.

The full text of the Template Language Reference is on-line too.
Access this document through the main table of contents for the help
system.

Important: if any part of the on-line help text conflicts with the
printed documentation, the on screen help takes precedence.
TopSpeed Corporation makes every reasonable effort to ensure the
printed documentation is up to date. However, lead-time required by
printers may create a lag in the documentation; while we can update
the help files that ship concurrently with a product revision, printed
materials must ‘catch up’ later.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

DOCUMENTATION CONVENTIONS

The documentation uses the typeface and keyboard conventions which
appear below.

Typeface Conventions:

Italics Indicates what to type at the keyboard, such as
Type This.

SMALL CAPS Indicates keystrokes to enter at the keyboard,
such as ENTER or ESCAPE.

Boldface Indicates commands or options from a pull
down menu or text in a dialog window. Note:
this style also uses a different typeface to match
the helvetica bold face which Windows uses as
the system font.

LETTER GOTHIC Used for diagrams, source code listings, to
annotate examples, and for examples of the
usage of source statements.

Special Tips, Notes, and Warnings— information that is not
immediately evident from the topic explanation.

Indicates critical information. If you read nothing else in this
chapter, please read this.

Keyboard Conventions:

F1 Indicates a keystroke. Press and release the F1

key.

ALT+X Indicates a combination of keystrokes. Hold
down the ALT key and press the X key. Then
release both keys.

CHAPTER 1 INTRODUCTION

REGISTERING THIS PRODUCT

Before you begin using Clarion for Windows, fill out and mail in the
registration card that came in the package. This Business Reply Card
makes you eligible to receive several important benefits. Once registered,
you can use TopSpeed’s Technical Support services, and you
automatically receive new product announcements and update alerts.

TECHNICAL SUPPORT

You can receive unlimited free technical support for Clarion for
Windows on CompuServe Information Service. Once connected to
CompuServe, type GO TOPSPEED. TopSpeed employees, as well as
TopSpeed Certified Support Partners (known as Team TopSpeed), will
answer your questions in a timely manner. Additionally you will get
advice and answers from other Clarion for Windows users. We strongly
recommend that our customers take advantage of this service.

Paid telephone technical support is also available from TopSpeed
Corporation. You can access our pay-per-call support by calling (900)
884-0444. Various paid support programs are also available. Call
TopSpeed Corporation customer service at (800) 354-5444 or (305) 785-
4555 for more information.

THE TOPSPEED FAX RETRIEVAL SYSTEM

TopSpeed also offers customers phone/FAX access to most often
requested technical and marketing documents. Documents on-line
include product brochures, technical documents, article reprints, price
lists, and even a “What’s Hot” update on TopSpeed products.

To request specific documents, dial (305) 785-4555, press 53, and listen
for the FAX Retrieval System’s instructions. You may also dial (305)
785-4556 (TopSpeed Standard Support Line), and press 1 to access the
system. The menu is interactive and user-friendly. First time callers can
request a list of available documents to review before making a selection.
You can then enter the document code number, and the material will be
immediately delivered to you. You can access the system directly from
your FAX machine or from any touch-tone phone.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

22

SSSSSETUPETUPETUPETUPETUP

This chapter explains the Clarion for Windows
system requirements, setup process, and setup
options. It also provides a brief introduction to
the environment as you’ll see it, the first time you start Clarion for
Windows.

SYSTEM REQUIREMENTS

You can run the Clarion development environment on any system that
meets the minimum system requirements for Microsoft Windows 3.x,
Windows 95, or Windows NT 3.51.

◆ Windows 3.x, 8 Megabytes of RAM recommended.

◆ Windows 95, 12 Megabytes of RAM recommended.

◆ Windows NT 3.51, 16 Megabytes of RAM recommended.

◆ Minimum of 8 to 20 Megabytes free hard disk space, depending on
the Setup options you select.

The applications you develop with Clarion for Windows will execute
comfortably on computers that meet only the minimum requirements for
these operating systems.

THE SETUP PROGRAM

The Setup program, on disk one of your installation disks, decompresses
and copies the Clarion for Windows files to your hard drive.

◆ For all the target operating systems, it provides you with options for
installing the various components, such as the example files.

◆ It asks before updating the PATH statement in your
AUTOEXEC.BAT file to include the Clarion for Windows directory.

CHAPTER 2 SETUP

◆ In Windows 3.x, it installs Program Manager icons for the Clarion
development environment, Debugger, Help files, and ReadMe files.

◆ In Windows 95, it installs the Clarion development environment,
Debugger, Help files, and ReadMe file icons to the Start ➤➤➤➤➤
Programs menu.

Starting Setup

To start the Clarion for Windows Setup program in Windows 3.x:

1. Insert disk one of the installation disks into your floppy drive.

2. From Program Manager, File Manager, or other shell program
capable of launching a program, choose File ➤ Run .

3. Type A:\SETUP (or B:\SETUP) in the Run dialog, and press the OK
button.

The Setup program provides an introductory screen and other text
information. It prompts you for your desired Setup Options.

To start the Clarion for Windows Setup program in Windows 95:

1. Insert disk one of the installation disks into your floppy drive.

2. From the Start menu, choose Settings ➤ Control Panel .

3. Choose Add/Remove Programs then press the Install button.

The Windows 95 Wizard will direct you through the installation
process.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Setup Options

After starting Setup, you’ll see a screen displaying a number of options.

1. Choose the Setup options by checking the boxes you want, then
press the OK button.

2. Specify the target drive and directory, then press the OK button.

Setup will install the main components of the Clarion Development
Environment to a BIN subdirectory one level below the target
directory you specify in the dialog.

The Clarion for Windows Setup program installs all files to the
target directory, and subdirectories beneath it. It installs no files to
any other directory.

During the installation, progress bars will display as Setup copies
the files.

3. Choose Yes or No when Setup asks whether to modify the PATH for
you.

For Windows 3.x, the Clarion for Windows development
environment requires that the BIN subdirectory be listed in the
PATH environment variable. If you choose No, you must edit the
AUTOEXEC.BAT file manually.

The only other change to any of your system files is that Clarion for
Windows adds its own section to WIN.INI (Windows’ initialization
file) when you run it for the first time.

4. Choose Yes or No when Setup asks whether to display the ReadMe
file.

If you don’t wish to read it right away, you’ll find an icon for it in
the Program Manager group (or the Start ➤ ➤ ➤ ➤ ➤ Programs menu) which
Setup creates for you. We recommend reading it as soon as Setup has
copied all the files.

5. Press the OK button when Setup is done.

CHAPTER 2 SETUP

STARTING CLARION FOR WINDOWS

To start Clarion for Windows, locate the Clarion for Windows icon
(Purple Pyramid) in the Clarion for Windows program group, and
DOUBLE-CLICK on it:

The Clarion for Windows development environment appears, ready for
you to begin work.

◆ You’ll find a quick guide to the development environment parts—
such as a diagram of the tool bar icons—in chapter three of this
book.

To run Clarion for Windows, navigate to Clarion for Windows with the
Start menu:

or, locate the Clarion for Windows icon in the Clarion for Windows
program group, and double-click it:

The Clarion for Windows development environment appears, ready for
you to begin work.

◆ You’ll find a quick guide to the development environment parts—
such as a diagram of the tool bar icons—in the next chapter.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

QUICK ACCESS TO FILES AND FUNCTIONS

Probably the first thing you’ll notice when you start Clarion for
Windows is the tool bar. The tool bar provides “short cuts” to commonly
used commands which manage your files and/or projects.

The Development Environment Tool Bar

The Development Environment tool bar includes the following icon
buttons:

The Pick button.

This button opens the Pick list for all types of
files, as described further in the section below.
Pressing this button is equivalent to choosing
File ➤ Pick from the menu.

The New button.

This button calls the New dialog, which allows
you to create a new application, Clarion source
code file, data dictionary, project file or text file.
Pressing this button is equivalent to choosing
File ➤ New from the menu.

The Open button.

This button calls the standard Open file dialog,
allowing you to “walk” the directory tree to
locate a file of your choice. Pressing this button
is equivalent to choosing File ➤ Open from the
menu.

The Save button.

This button saves the current file, of whichever
type is open. When you run Clarion for
Windows for the first time, this button is
disabled, because there are no open files.
Pressing this button is equivalent to choosing
File ➤ Save from the menu.

CHAPTER 2 SETUP

The Make button.

This button compiles and links the current
project or application. The Make window details
the progress of the operation. Pressing this
button is equivalent to choosing Project ➤
Make from the menu.

The Run button.

This button compiles and links (if your current
settings include Auto Make Before Run) the
current project or application, then runs it.
Pressing this button is equivalent to choosing
Project ➤ Run from the menu.

The Debug button.

This button compiles and links (if your current
settings include Auto Make Before Run) the
current project or application, then loads the
Clarion for Windows Debugger. Pressing this
button is equivalent to choosing Project ➤
Debug from the menu.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

The Pick List

The Pick dialog lists all the most recently used files in a list box
categorized by Application, Dictionary, Project, Database, Clarion
Source, and All. Each of these tabs displays a pick list of up to twenty of
the most recently used files of that type:

The Pick dialog provides the following buttons:

Select Opens the currently selected file.

Remove Removes the currently selected file from the
Pick list.

New Allows you to create a file.

Open Allows you to open a file not on the Pick list.

CHAPTER 2 SETUP

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

33

DDDDDEVELEVELEVELEVELEVELOPMENTOPMENTOPMENTOPMENTOPMENT F F F F FLLLLLOOOOOWWWWW

Source Generation
(REGISTRY.TRF)

Data Definitions
Data Dictionary

(*.DCT)

Application Generator
(*.APP)

Window Structures
Window Formatter

Report Structures
Report Formatter

Generated Source Code
(*.CLW)

Embedded Source
Text Editor

Compile & Link

Executable
(.EXE File)

Debugger

Compile & Link Options
Project System

Template Definitions
Template Registry
(REGISTRY.TRF)

Formulas
Formula Editor

CHAPTER 3 DEVELOPMENT FLOW

This chapter provides an overview of how the Application Generator ties
everything—the Clarion language and the parts of the development
environment—together.

The Application Development Flow chart on the previous page depicts
how the working parts of the development environment connect with
each other when you use the Application Generator to develop your
application.

CLARION PROGRAMMING

Clarion is a fourth-generation (4GL), business oriented programming
language specially designed for Rapid Application Development (RAD).

Clarion for Windows is a complete development environment that helps
you do everything from designing your data dictionary, to generating
Clarion source code, to supplying reusable code, to managing the
compile, link, and distribution of your files.

As implemented in Clarion for Windows, the Clarion language
automatically handles the Windows “housekeeping” chores that many
other Windows programming languages leave to you.

File driver independence is built into the language; Clarion for Windows
contains dynamic link library drivers for most popular PC database
formats, plus other drivers are available as add-ons.

Template Driven

Clarion’s Application Generator is template driven. The various
templates provide many of the benefits of object oriented programming,
especially reusability, yet without the overhead of learning an object
oriented language.

The template registry (REGISTRY.TRF) stores pre-written executable
code and data structures which can be customized and reused. You can
modify the default Clarion templates and store your modifications in the
template registry. You may also add third party templates and use them
in addition to, and along with, the Clarion templates.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Procedure Templates

A procedure is a stored series of Clarion language statements which
perform a task. A Procedure template is an interactive tool that requests
information from the developer, then generates a procedure customized
for just the task the developer needs to accomplish.

Clarion for Windows provides a rich assortment of Procedure templates
with which you can rapidly develop database applications. In Getting
Started, the Quick Start Tutorial introduces a few procedure templates;
the Hands On Tutorial introduces more. You identify the procedure
template that generates code closest to the task you want to perform,
then customize it with the other development environment tools. The
procedures can include elements such as browse windows to view groups
of records, and form windows, to edit one record at a time.

To incorporate a procedure into an application, you select a procedure
template from the registry and use it to add the new procedure to the
.APP file (the file where the Application Generator stores all
procedures). If the procedure drives a window with a menu, the menu
actions are automatically added to the application and marked as
“ToDo.”

The usual way to customize a procedure is to call one of the
formatters—the Window Formatter or Report Formatter—and add a new
window or a new control to a dialog box. The formatters are visual
design tools: to place a command button in a dialog box, you pick the
button tool from a toolbox, then click in the dialog box under
construction to place the button.

Another way you may customize a procedure is to add embedded source
code. The Application Generator displays a tree diagram showing the
main locations where source can be embedded, including before, during,
and after the procedure, plus at each event the window or entry fields in
the procedure may generate. You can pick a precise spot to execute the
code, then “hand code” it, or use “code templates” to generate the code
for you.

Control Templates

A control is almost anything you see on a window or a report. For
example, a check box, a push button, an entry field, and a list box are all
controls.

Control templates create controls and the executable code for
maintaining them. The source code they generate can, for example,
load the data from a file into a QUEUE, then display the data in a
list box.

CHAPTER 3 DEVELOPMENT FLOW

Code and Extension Templates

Code templates are executable code fragments with functionality related
to a procedure rather than to a specific control. For example the
DateTimeDisplay template can display a clock on an action bar, or a date
on a window. Each typically provides you with on screen instructions on
how to incorporate its functionality into the application.

The Application Generator generates your application’s source code from
the templates, plus any customized code (embedded source code) you
provide. The Project System then compiles and links to create the
application.

THE DEVELOPMENT PROCESS

At a very high level, application development requires analysis of a
situation, followed by design and implementation of a solution.

Analysis requires identification and segmentation of the data and of the
processes that manipulate the data.

Implementation of a good solution requires providing a cost effective
method of performing the processes identified during analysis.

Clarion for Windows is designed to facilitate the implementation of
efficient data processing solutions. Each of the parts of the development
environment plays a specific role in the implementation process.

CLARION’S DEVELOPMENT ENVIRONMENT

The development environment contains seven main functional parts, all
of which are accessible from the others. When using the Application
Generator, buttons in the various dialogs lead to the other parts. The
Application Development Flow chart at the beginning of this chapter
pictures how the parts interact with each other and the template registry,
with the Application Generator at the center of the whole process.

This section provides a description of each part, in the order that a
typical programmer using the Application Generator might encounter it.
Each contains dialog boxes which the programmer fills out to “describe”
the Application’s functionality to the Application Generator. On your
command, the Application Generator generates the specified source
code, and the Project System compiles and links it to make an executable
program.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Programming in Clarion for Windows is, in many ways, a personal
journey through a series of dialog boxes. There is no mandatory
sequence in which you must “fill in” the dialogs, though some are
prerequisites for others. If you know which dialogs do what, it makes
building your application that much quicker.

The Dictionary Editor

The Data Dictionary (a .DCT file), maintained by the Dictionary Editor,
holds a description of the database, including its files, keys, indexes,
database drivers, fields, file relations, field validation rules, referential
integrity constraints, and more. It’s the first file you create when you
design your application.

You can create the file definitions “from scratch” (using Quick Load or
not), or import definitions from existing data files.

The other parts of the development environment use the information in
the dictionary to let you, for example, easily place data fields in a dialog
box you design for the end user. The Application Generator creates code
for all the statements that access the data files based on how you
construct the Data Dictionary.

Start a new dictionary with the File
➤ New command, then select
Dictionary. This leads you to the
Dictionary dialog. Define your
application’s data files, aliases, and
views in this dialog. It also shows
the relationships between files.
Buttons lead to the New File
Properties , the New File Alias , and
the New Relationship dialogs.

Specify the name and file driver for
each data file, one by one, in the
New File Properties dialog. It also
allows you to set options such as
Threaded, which specifies that each
execution thread accessing the file
gets its own record buffer. This is
useful for MDI applications.

CHAPTER 3 DEVELOPMENT FLOW

From the Field/Keys Definition
dialog, press the Insert button to
specify fields, keys, and index files.
All the information is arranged
hierarchically.

Define fields, their data types and
sizes in the New Field Properties
dialog. You can pre-define control
properties, such as text justification.
Two buttons provide shortcuts to all
the properties dialogs in the
Window and Report Formatters. You
can also “back up” to the previous
dialog to define keys and
relationships.

Specify the key components in the
Key Components dialog. Clarion
for Windows automatically builds
the key correctly even if you specify
multiple field types. From here, you
“back up” to the Dictionary dialog
to define relationships.

Define relationships in the New
Relationship Properties dialog.
You can also specify Referential
Integrity Constraints from controls
in this dialog. With the major parts
of the dictionary defined, you save
the dictionary and move on to the
.APP file.

The Application Generator

The Application Generator generates your application’s source code, one
procedure at a time, based on the templates you pick from the template
registry. It allows you to add global and local memory variables, and
customize the procedures with visual design tools and embedded source
code.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

The Application Generator provides access to the other parts of the
development environment so you can customize the look and
functionality of the windows, menus, reports and other user interface
elements.

Start a new application with the File
➤ New command, then select
Application . This allows you to set
the basics—application name, data
dictionary name, help file and the
application template—in the
Application Properties dialog.
This creates the .APP file and
displays the Application Tree.

View and maintain the parts of your
application in the Application Tree
dialog. It hierarchically displays
your application’s procedures, and
marks the ones still to be defined as
“ToDo.” Press the Global button to
define global memory variables.

Define the functionality for a
“ToDo” procedure in the Select
Procedure Type dialog. Procedure
templates such as Browse and Form
appear in a list. The Select button
brings up the Procedure
Properties dialog.

The Procedure Proper ties dialog
is the hub for all the other dialogs
that let you customize the procedure
so that your application does the job
the way you want. Press the Data
button to define local memory
variables.

Define and set the order the
program initializes local memory
variables in the Data dialogs. Press
the Insert button to define variable
name, type, size etc., in a dialog box
identical to the New Field
Properties dialog.

CHAPTER 3 DEVELOPMENT FLOW

Select the files, keys, aliases, views,
and fields the procedure or control
will access in the Select Fields
dialog.

Press the Embeds button to display
the Embedded Source dialog. This
allows you to insert custom
executable code at points before,
during, and after the procedure, or
on window and field-specific events.
Select the embed point and press the
Insert button.

After you’ve customized the
procedure template using the
Window Formatter, Report
Formatter and/or Text Editor, you
can return to the Application Tree
and generate the code!

The Window Formatter

You visually design your application’s windows and controls—
everything the end user sees—in the Window Formatter. It automatically
generates source code for the elements you visually design on screen.

When using the Application Generator, you’ll call the Window Formatter
by pressing the Window button in a Procedure Properties dialog.

The Window Formatter provides a
view of the window under
development. CLICK in the toolbox,
then CLICK in the window to place a
new control.

You can then use the Preview!
command to see exactly how the
window appears to the end user.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Each window and each control in
the window has an associated
property dialog that defines its
behavior and appearance, and if an
entry field, its contents. RIGHT-CLICK

the control or window to access it’s
property dialog. The Window
Properties dialog sets basic
elements such as system menus,
caption, size, shape, scroll bars, etc.

A typical control property dialog
sets options such as a label, size,
shape, color, font, and, for entry
fields, a variable to reference its
contents.

Choose Menu ➤ New Menu to call
the Menu Editor. Edit the menu text,
and new menu items with the Item
button, and specify menu item
functionality by selecting a
procedure to execute when the item
is selected, or choose from built in
standard windows actions such as
Cut, Copy, and Paste.

Use the Actions tab to associate a
procedure call with a menu item, so
when the user selects the menu
command, it executes the procedure.

The Report Formatter

The Report Formatter works in sync
with the Application Generator in
much the same way as the Window
Formatter. You place controls in a
sample report page. At run time, the
print engine processes the records,
handling page breaks, group breaks,
headers, and footers as specified.

CHAPTER 3 DEVELOPMENT FLOW

The Text Editor

The Text Editor is a full function programmer’s editor in which you can
handwrite source code.

Most likely, when using the Application Generator, you’ll call the Text
Editor to create embedded executable source code to customize the way
a procedure operates.

The Editor features color coded
syntax highlighting, making it
easier to identify the different parts
of the Clarion language statements
for editing purposes. It also has full
text search and replace capabilities,
along with all the standard editing
tools.

The Formula Editor

The Formula Editor helps you
quickly generate and manage simple
or complex assignment statements.
The Formula Editor provides syntax
checking, plus instant access to all
the variables, functions, and
operators that are used in
assignments.

The Project System

The Application Generator automatically creates the project file for the
application. The project file contains compile and link options, such as
whether to include debug code, optimization choices, external drive files,
and so on.

The Project Tree displays the source
code files, libraries and other
external files included in the
compile and link process. Press the
Properties button to set specific
options. When creating an
application with the Application
Generator, the Project file is
maintained by the Application
Generator.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

The Debuggers

Debugging a program usually requires running the program and
repeatedly stopping it to examine the value of different variables. The
debuggers (16bit and 32bit) have of a number of windows which display
source code, variable contents, active procedures and more.

Tell the project system to include
debug information in the .EXE file,
then start the debugger by pressing
the Debug button in the Compile
Results dialog, or choosing Project
➤ Debug .

The simplest way to debug your application is to identify the part of the
program that you think is producing the bug, and set a breakpoint, at that
part of the code.

You can then run the program, and the Debugger will suspend it at the
break point so that you can examine the values of the variables. This will
help you pinpoint the problem so that your application is perfect!

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

44

UUUUUSINGSINGSINGSINGSING THETHETHETHETHE D D D D DICICICICICTIONARTIONARTIONARTIONARTIONARYYYYY E E E E EDITDITDITDITDITOROROROROR

In this chapter, you will learn how to
create a Database Dictionary. This
defines the application’s data files,
data fields, keys, entry validation
rules, entry options, file relationships,
and referential integrity constraints.

Organize records
based upon the
contents of a field or
combination of fields
by defining keys. See
Adding or Modifying
Keys.

Name each file and
choose its file driver.
See the New File
Properties dialog.

To create the
dictionary, you must
define the individual
files that make up the
database. See Adding
Files to the Dictionary.

Add fields and define
field properties,
including Entry and
Validation options. See
Adding or Modifying
Fields.

CHAPTER 4 USING THE DICTIONARY EDITOR

This chapter shows you how to set up a data dictionary. The Application
Generator generates Clarion language statements for a wide range of
your application’s functionality based on how you construct your data
dictionary. This chapter explains:

◆ What a data dictionary is and does.

◆ How the data files you design and options you choose in the
dictionary dialogs can determine the efficiency of your
application’s data storage. This includes a brief discussion of
relational database theory.

◆ How to set data validation and entry options for end user data
entry.

◆ How to specify default screen control options. Clarion even
allows you to specify controls such as spin boxes or custom
list boxes, from within the data dictionary. The Application
Generator automatically uses these controls whenever the field
is referenced.

WHAT A DATA DICTIONARY IS

The Data Dictionary is the central repository for information about your
application’s files and the fields within those files. The information
stored includes how and where the data will be stored on disk, as well as
how the data will be presented to end users on reports and computer
screens.

The Dictionary dialog
lists all files in the

database, including
Aliases.

Define each data file in a
separate File Pr oper ties

dialog.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

The Dictionary file (.DCT) stores

◆ file names
◆ file descriptions
◆ file structures
◆ file keys
◆ file indexes
◆ file relationships
◆ field data types
◆ field descriptions
◆ field prompt values (how the data is presented to the user)
◆ field validation
◆ field entry pictures
◆ field report column titles
◆ status bar messages
◆ much more

Benefits of Using a Data Dictionary

The benefit of having all this information stored in a central place is that
it saves huge amounts of time in developing and maintaining
applications.

Plus it gives your application a consistent look and feel, so that end users
have shorter learning curves.

The information stored in the Data Dictionary defines a default method
for handling data. By defining defaults here in the Data Dictionary, you
establish a standard method of handling each file and each field which
will be used every time you reference the file or field. This means you
design your data handling method only once, no matter how many times
your application makes use of a field, and no matter how many
applications use this dictionary; but you still retain the ability to modify
this default method in any particular case.

Dictionary Editor Functions

Following is a list of the main functions the Dictionary Editor performs
and the dialog that performs each function.

❏ Manage files and file relationships in the Dictionary dialog.

❏ Choose the file driver and specify the names and locations of data
files in the Edit (or New) File Properties dialog.

CHAPTER 4 USING THE DICTIONARY EDITOR

❏ Manage fields and keys in the Field/Key Definition dialog.

❏ Define specific fields and the types of data they hold in the Edit (or
New) Field Properties dialog.

❏ Define specific file relationships in the Edit (or New) Relationship
Properties dialog.

OVERVIEW: CREATING A DATA DICTIONARY

This section provides an overview of the general process of creating a
data dictionary, that is, defining files, fields, keys, and file relationships.
This overview procedure leaves many options at their defaults and
provides basic descriptions of what the dialog boxes in the Dictionary
Editor do. The dialog boxes and the options they contain are explained
more fully in the remainder of this chapter.

❏ Define the files in your database and define the fields in each file:

1. Choose File ➤ New from the development environment menu, then
select the Dictionary tab.

2. Specify the path (Folders) and File Name for your dictionary file,
then press the Create button.

3. Press the Add File button, then, when asked if you want to use
Quick Load, press the No button.

The New File Properties dialog appears. See the A Word About
Quick Load section below for a brief discussion of using Quick Load
to add files to your data dictionary.

4. On the General tab, type the Name, the Prefix , and choose the File
Driver for your data file, then press OK to close the dialog.

5. Press the Fields/Keys button to open the Field/Key Definition
dialog.

6. On the Fields tab, press the Insert button.

The New Field Properties dialog appears.

7. On the General tab, type in the field Name, choose the Data Type ,
specify the length in Characters .

8. Select the Validity Checks tab, and choose an option for entry
validation for the field.

9. Select the Window tab to specify how the field and its prompt will
appear in your application windows and dialogs.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

10. Select the Report tab to specify how the field will appear on a
printed report.

11. Press OK to end this field and define the next.

The New Field Properties dialog appears again, ready for the next
field.

12. Repeat steps 7 through 11 for additional fields within this file.

After each field, a blank New Field Properties dialog appears,
ready to accept the next field.

13. Press the Cancel button in the blank New Field Properties dialog
that appears after adding the last field, to return to the Field/Key
Definition dialog.

❏ Define the Keys in your files:

1. From the Keys tab, press the Insert button to open the New Key
Properties dialog.

2. On the General tab, type the Key Name .

3. Select the Fields tab, then press the Insert button to open the Insert
Key Components dialog.

A key is made up of one or more fields in your file. Thus the Insert
Key Components dialog allows you to specify which fields will
become part of your key.

4. Highlight a field from the list by clicking on it, then press the Select
button.

Press the Insert button again to add any additional fields to your key.

5. Repeat steps 2 though 4 for other keys in this file.

6. Press the Cancel button to return to the Field/Key Definition
dialog.

7. Press the Close button to return to the Dictionary dialog.

Repeat the above sequence defining files, fields, and keys for each
additional file in your database.

❏ Define the relationships between your files:

1. Select a file to relate to another, then press the Add Relation button
on the Related Files side of the Dictionary dialog.

2. Choose the Type of relationship from the drop down list.

3. Choose the Related File from the drop down list.

This is simply the other file in the relationship.

CHAPTER 4 USING THE DICTIONARY EDITOR

4. From the respective drop down lists, choose the Primary Key for the
original file and the Foreign Key for the related file.

5. Press the Map By Name or Map By Order button to establish a link
between the primary and foreign keys.

6. Press the OK button to return to the Dictionary dialog.

7. Choose File ➤ Save As to save the .DCT file.

DESIGNING YOUR DICTIONARY AND YOUR DATABASE

This section provides a quick review of relational database theory.
Planning and organizing your application’s database design up front can
result in a more efficient application for the end user, not to mention
saving hours of coding and maintenance time.

The relational model concerns itself with three aspects of data
management: structure, integrity, and manipulation. For our purposes,
we will discuss the three practical requirements of these aspects: data
normalization, keys, and relational operations.

Normalization

At its simplest, data normalization means that a data item should be
stored at only one location. To avoid duplication within the database, a
good design splits data into separate files.

For instance, assume a very simple order-entry system storing the
following data:

Customer Number
Customer Name
Customer Address
ShipTo Address
Order Number
Order Date
Product Number
Quantity Ordered
Unit Price

You could store all the data in each record of one file, but that would be
inefficient (unless the business has no repeat customers). A second order
from a customer would repeat all the Customer data, for example. To
eliminate this duplication, you could split the data into three files:

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Customer File: Order File: Item File:

Customer Number Order Number Product Number

Customer Name ShipTo Address Quantity Ordered

Customer Address Order Date Unit Price

This organizes the data in a logical scheme and eliminates duplication.
The process of relating each record to another record in another file
requires adding fields to at least two of the files, so that the files can
share common values. This will be discussed in a section below.

Strict relational theory specifies that:

◆ The database consists of one or more tables, which roughly
correspond to Clarion’s Data Dictionary files.

◆ The table consists of columns (which at the file level we refer
to as fields) and zero or more rows (records).

◆ Each record contains exactly one value for each field.

Keys

In the simple order-entry system above, to relate the records in the
customer, order and item files to one another, we could add one field
each to two of the files as follows:

Customer File: Order File: Item File:

Customer Number Order Number Product Number

Customer Name Customer Number Order Number
Customer Address ShipTo Address Quantity Ordered

Order Date Unit Price

Relational database theory states:

◆ A primary key should exist for each table. A primary key is a
unique field or unique combination of fields. The primary key
must not accept a null or blank value.

◆ A foreign key can match the primary key in another table. If
table “A” includes a foreign key that matches table “B’s”
primary key, then every value in the key in table “B” must
either be equal to a value in the primary key in a record in “A,”
or be null.

In the example above, the Customer Number is the primary key (there
could be two “John Smith’s,” but not two customer #1001’s). The
Customer Number field is added to the Order file, as a foreign key.

CHAPTER 4 USING THE DICTIONARY EDITOR

You can define three types of relationships between files:

◆ One-to-Many. One record in a file relates to many in another.
In the example above, a single customer number may relate to
many records in the Order file. In business database
applications, this is the most common relationship. It is also
referred to as a Parent-Child relationship.

◆ One-to-One. Exactly one record in a file relates to one record
in another file. This is best suited for when one file may or
may not have data in some fields. If all the fields were in one
file, disk space would be wasted on empty fields.

In the example above, if the ShipTo address was rarely
different than the Customer Address, you could place it in
another file.

◆ Many-to-Many. Multiple records in a file relate to multiple
records in another. To apply it to the example, assume the
Order-Entry system were made to fit a manufacturing concern
which buys parts and makes products. If a part could be used
in many different products, and a product could use many
parts, two additional files might look like:

Parts File: Product File:

Part Number Product Number

Part Description Product Description

Relational Operations

Relational database theory provides a set of operators for manipulating
data. The three operations that theoreticians specify for relational
database systems are Select, Project, and Join. A system does not have to
explicitly support the statements as long as it supports their functionality.
For theoretical purposes, a table simply consists of a set of columns (or
fields), plus zero or more rows (records) of data values.

◆ A Select extracts a row subset of a given table—in other
words, a subset of records which satisfy a given condition.

◆ A Project extracts a column subset of a given table—in other
words, a subset of specified fields, which then eliminates
extraneous records (example below).

◆ A relational Join takes two tables and joins them together to
form a new, wider table.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Select (not the same as SQL’s “Select”) provides the means to evaluate a
table and extract a record or records. The database must have the ability
to evaluate the information a single record at a time—in isolation—
without looking at the other rows. In the example, extracting a record or
records (spanning all files) that meet the condition “Customer Number
= 100” is an example of a relational select.

Project extracts unique values by field. In the example above, assuming
that the Item file has many duplicates, to Project the file “Item” over the
field “Product Number” yields a new table of all the products ordered
by customers (not necessarily matching all products made, in the
Product file). All the products sold would have one and only one listing.

Join: Going back to the example, to work with all the combinations of
parts and products possible, there must be a special relationship
between these two files. The solution is to define a third file, called a
“Join” file. This file creates two One-to-Many relationships. The
relationships between the three files would be defined:

Parts File:

Part Number (Primary key)

Part Description

Parts2Prod File:

Part Number (1st Primary key component and Foreign
key)

Product Number (2nd Primary key component and Foreign
key)

Quantity Used

Product File:

Product Number (Primary key)

Product Description

The Parts2Prod file has a multiple component Primary key and two
Foreign keys. The relationship between Parts and Parts2Prod is One-to-
Many. The relationship between Product and Parts2Prod is also One-to-
Many. This makes the Join file the “middleman” between two files with
a Many-to-Many relationship.

Usually a Join file contains additional information. In this example, the
Quantity Used logically belongs in the Parts2Prod file.

CHAPTER 4 USING THE DICTIONARY EDITOR

The Data Dictionary Editor

The Clarion language supports the three aspects of data management that
relational database theory concerns itself with. The Dictionary Editor is a
tool for planning the structure and integrity of the database, two of the
relational model’s “rules.” The Dictionary Editor also allows you to
“preconstruct” some of the relational operations specified by database
theorists; Clarion language statements handle the remaining operations.

◆ The Dictionary Editor allows you to easily set up the proper
database structure by defining files, fields, and relations.

◆ The Dictionary Editor allows you to easily plan both primary
and foreign keys for your database, as per the relational
model’s integrity rules.

◆ The Dictionary Editor allows you to easily implement data
integrity constraints that automatically keep related files in
sync by “cascading” changes across files and by “restricting”
or limiting changes or deletions that would cause
inconsistencies between files.

◆ Additionally, the Dictionary Editor supports preconstruction of
“Views.” The View creates a virtual file, automatically
handling any necessary “Joins” and “Projects.”

OPENING THE DICTIONARY EDITOR

You generally create a data dictionary as the first step in creating an
application. Therefore, you will access it first from the main menu.

❏ To open the Dictionary Editor to create a new dictionary file:

1. Choose File ➤ New from the development environment menu, then
select the Dictionary tab.

2. Specify the path (Folders) and File Name for your dictionary file,
then press the Create button.

❏ To open the Dictionary Editor to edit an existing dictionary file:

1. Choose File ➤ Open, then select the Dictionary tab.

2. Change drives or directories as necessary, and locate the dictionary
file you wish to open. DOUBLE-CLICK on its name in the File Name
list, or select it and press the Open button.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

You may use the same data dictionary for more than one application. An
application, however, can only have one data dictionary.

Tip: Clarion for Windows will automatically read and convert
Clarion for DOS3.007 data dictionaries (and above). It will
import all attributes except display size attributes for memo
fields. Also, because relational model rules are more strictly
enforced in Clarion for Windows, some relationships may
not be complete due to stricter error checking.

❏ To add a text description to the data dictionary:

1. Press the Dictionary Properties button at the bottom of the dialog.

2. On the Comments tab, type the description in the space provided.

The description is solely for your convenience, and has no effect on the
application. It is useful when other programmers take over your project,
or for when you return to the project after a long absence.

❏ To add a password to the data dictionary:

1. Press the Password button.

2. When the Password Validation dialog appears, type a password in
the space provided, and press the OK button.

3. When the Password Verification dialog appears, type the same
password, and press the OK button.

The password can help protect your application from unauthorized
access.

The Dictionary
Properties dialog allows

you to store a text
description of the data

dictionary.

CHAPTER 4 USING THE DICTIONARY EDITOR

ADDING FILES TO THE DICTIONARY

The first function of the dictionary is to specify the data files for the
application. Define the files by adding them to the left side of the
Dictionary dialog. Either of the two “Add” buttons to the right of the list
allow you to add to the list.

❏ To add a file to the files list, press the Add File button. This displays
the New File Properties dialog.

❏ To add an alias to the list, press the Add Alias button. This displays
the New Alias dialog. See the Adding a File Alias section, below.

❏ To add a view to the list, choose Edit ➤ Add View. This displays the
New View dialog. See the Adding a View section, below.

A Word About Quick Load

When you press the Add File button you will be given the option of
using Quick Load to add your file to the data dictionary. Quick Load
allows you to specify only the most basic information about your file
and its fields, while Quick Load supplies all other required attributes by
default. Quick Load is especially useful for quickly producing a working
application that can then be fine-tuned later.

Alternatively, if you have done extensive project planning and
specification, you may prefer to add your file without using Quick Load
so that you can take advantage of the many file and field attributes
supported by Clarion’s data dictionary from the very beginning. For
example, the data dictionary supports data entry validation, but
validation defaults to none if Quick Load is used. The following section
assumes you are not using Quick Load to add the file.

See Adding a File with Quick Load in Chapter 3 of Getting Started.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

New File Properties

Define a new file for the database with the New File Properties dialog.
This dialog allows you to add a new data file to the list and choose its
file driver.

Once the file appears on the list, you may declare fields, keys, set
relationships, and other properties for the data file. Using the data from
this dialog, the Application Generator will write the FILE structure
declaration, plus file I/O routines as required by your application.

General

Name Type a data file name, as you wish to refer to it
in your code. This serves as the label for the
Clarion FILE structure. Specify a valid Clarion
label (see the Language Reference)—Clarion
will automatically truncate the name if
necessary. You may also specify a completely
different name for the DOS file—see Full
Pathname , below.

Tip: You can specify file names to take advantage of Novell
Paths.

1. Prefix the file name with “!Glo:.” For example, !Glo:Customer.
2. Then create a variable in your program with the same name, less

the exclamation point: Glo:Customer.
3. Embed the following code in the CheckOpen Setup embed point:

Glo:Customer = Server/Vol:\dir\dir\Cust.btr

The file can now be opened without mapping a drive letter to it.

CHAPTER 4 USING THE DICTIONARY EDITOR

Description Enter a string description for the file. Clarion
automatically displays the descriptions in
certain dialogs, allowing you to quickly
recognize the file contents.

Prefix As you enter the data file Name, Clarion
automatically extracts the first three letters to
use as a label prefix when referring to the file.
Optionally specify up to 14 characters of your
choice in this field.

The prefix allows your application to distinguish
between similar variable names occurring in
different file structures. A field called Invoice
may exist in two different files: Orders and
Sales. By establishing a unique prefix for
Orders (ORD) and Sales (SAL), the application
may refer to fields as ORD:Invoice and
SAL:Invoice. Prefix is no longer required in
Clarion 1.5. See Field Qualification Syntax in
the Language Reference for details.

File Driver Specify the file type: TopSpeed, Clarion,
Btrieve, ASCII, etc. When using the Application
Generator, Clarion for Windows automatically
links in the correct database file driver library.
See the Database Drivers appendix for a
discussion of the relative advantages of each
driver.

Remember that file systems may vary in their
support of some of the attributes which you add
to the FILE structure in this dialog box.

Driver Options Optionally type a string for an additional driver
attribute. This conveys additional instructions to
the file driver and corresponds to the second
parameter for the DRIVER attribute, also known
as a “driver string.” The Database Drivers
appendix contains additional information.

Owner Name Optionally type a string containing the password
for access to the file. This is dependent on the
file system. This adds the OWNER attribute to
the FILE statement. For most file systems, you
must also check the Encrypt box (below).

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Encrypting the file means that only your
application will be able to read the file. It does
not mean that it automatically prompts the end
user for a password. The end user, however, may
not access the data with any other file viewer.

When using the ODBC driver, type the data
source name, user ID, and password, separated
by commas, in this field. See the ODBC
appendix for more information.

Full Pathname Optionally, type a fully qualified file name for
the data file. You may omit the file extension—
Clarion will supply the correct extension
depending on the file driver chosen. This
supplies the parameter for the NAME attribute.

If you omit this field, Clarion supplies a default
by appending the first eight letters in the Name
field to the currently active path.

When using the TopSpeed driver, if you wish to
store multiple tables in a single physical file,
separate the file and table names with “\!,” as in
TUTORIAL\!ORDERS. This refers to the ORDERS
table in the TUTORIAL.TPS file. See the
Database Drivers appendix for more
information.

Note: The first eight characters of the table name must be unique
for all the tables stored in this physical file. Example: use
\!EmpPayroll and \!EmpMaster, not \!EmployeePayroll and
\!EmployeeMaster.

When using an ODBC driver to define a FILE
such as Microsoft Access, which can store
multiple tables in a single file, place the table
name in this field. Typically, the name of the
physical file which includes the table is listed in
the ODBC.INI file; the ODBC driver manager
provides this information to the driver. See the
ODBC appendix for more information.

Tip: To specify a variable name instead of the actual file name,
place the variable name in this field following an exclamation
point (!). For example: !FileNameVar.

CHAPTER 4 USING THE DICTIONARY EDITOR

Enable File Creation
Optionally specify that the application should
create the data file if it does not exist at run
time. This adds the CREATE attribute to the
FILE statement.

Reclaim Deleted Records
This option is dependent upon the file driver. It
specifies that the file driver reuse file space
formerly taken up by deleted records.
Otherwise, the application adds new records to
the end of the file. This adds the RECLAIM
attribute to the FILE statement.

Encrypt Data Records
Optionally turn on file encryption. You must
also specify an Owner Name (see above). This
adds the ENCRYPT attribute to the FILE
statement.

Open in Current Thread
Optionally specify that each execution thread
that uses this file, allocates memory for its own
separate record buffer. This is typically for use
in multiple document (MDI) applications, and
improves file handling. The Clarion default
templates automatically add the THREAD
attribute to each FILE structure.

Use OEM Collation
The OEM attribute specifies that the FILE on
which it is placed contains non-English
language string data. These strings are
automatically translated from the OEM ASCII
character set data contained in the file to the
ANSI character set for display in Windows. All
string data in the record is automatically
translated from the ANSI character set to the
OEM ASCII character set before the record is
written to disk.

The specific OEM ASCII character set used for
the translation comes from the DOS code page
loaded by the COUNTRY.SYS file. This makes
the data file specific to the language used for
that code page, and means the data may not be
usable on a computer with a different code page
loaded.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Enable Field Binding
Optionally specify that all variables in the
RECORD structure are available for use in
dynamic expressions (using BIND and
EVALUATE) at run time. The compiler will
allocate memory to hold the full Prefix:Name
for each variable. It would otherwise use its own
internal reference for each variable. Therefore
the BINDABLE attribute increases the amount
of memory necessary for the application.

Comments

Comments Select the Comments tab to type a separate file
description of up to 1000 characters.

Options

Do Not Auto-Populate This File
Checking this box tells the Application Wizard
not to generate Browse procedures or Update
procedures for this file.

User Options The text typed into this field is made available to
any Utility Templates that process this file. The
Utility Templates determine the proper syntax
for these user options.

To modify the file properties at any time, highlight the file name on the
Dictionary dialog list, then press the Properties button.

CHAPTER 4 USING THE DICTIONARY EDITOR

ADDING A FILE ALIAS TO THE DICTIONARY

An alias creates a second reference for a file without duplicating the file
on disk. You can add an alias for a file only if it’s already on the
Dictionary list. In the Dictionary dialog, press the Add Alias button to
display the New File Alias dialog.

A file alias provides several advantages, at the cost of some system
overhead:

◆ Allows you to set multiple relationships between files.

Strict relational database theoreticians state a file may only have a
single relational link to another file at a time. Aliases allow you to
“legally” work around this limitation.

◆ Allows a second file buffer for the same file.

You could use this for a second file browse, as well as entry forms
and other items for each. This is particularly useful for a Multiple
Document Interface (MDI) application.

◆ Uses additional memory and resources.

Any file driver that uses external key files requires additional file
handles for each alias. For example, a file with three external keys
and three aliases requires sixteen file handles: one each for the “first”
data file and its three keys, and an additional four for each of the
aliases. When using aliases, we recommend choosing a file driver
that stores keys internally, such as TopSpeed or Btrieve.

Tip: When using aliases, you must open the file in Share mode.

The New File Alias dialog includes the following tabs and fields:

Setting up a file alias,
which can then be used

like a normal file.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

General

Name Type an alias “name”, as you wish to refer to it
in your code. The name must be a valid Clarion
label.

Description Enter a string description for the alias. Clarion
displays the descriptions in dialogs such as the
Dictionary dialog.

Prefix By default, Clarion will use the first three letters
of the Name for the prefix. Optionally specify
up to 14 characters of your choice.

Alias File Choose a file from the drop down list. This is
the original file that the alias “references.” The
drop down list shows only the files previously
defined using the Add File command in the
Dictionary dialog.

Comments

Comments Select the Comments tab to type a separate file
description of up to 1000 characters.

Options

Do Not Auto-Populate This File Alias
Checking this box tells the Application Wizard
not to generate Browse procedures or Update
procedures for this file alias.

User Options The text typed into this field is made available to
any Utility Templates that process this file. The
Utility Templates determine the proper syntax
for these user options.

To modify the alias properties at a later time, highlight the alias name
on the Dictionary dialog list, then press the Properties button.

You can edit the fields and keys for the Alias by pressing the Fields/
Keys button. The Field/Key Definition dialog lists the fields and keys
for the original file; any changes you make will update the originals.

CHAPTER 4 USING THE DICTIONARY EDITOR

ADDING A VIEW TO THE DICTIONARY

A VIEW is a virtual file constructed from selected fields in multiple
files.

Creating a view provides a (potentially) major advantage in a Client-
Server environment because the Server has the ability to do much of the
work. The Server processes the overhead of the relational “Join” and
“Project” operations which would otherwise tie up the local machine.

When working with views, be sure to include all the fields you need to
work with in the VIEW, and don’t try to access any fields not in the
VIEW. This is necessary because only the data elements specified in the
VIEW—not the RECORD structures from the component files—are
updated. This means accessing a field in the RECORD structure which is
not also defined in the VIEW structure returns an undefined value.

The VIEW structure has no prefix. Access its fields by using the prefixes
for the original RECORD structures defining the fields. This is
transparent when you use the Application Generator. The File
Schematic Definition automatically adds the proper prefix so that the
generated code is correct.

To add a view to the files list, choose Edit ➤ Add View . Fill in the New
View dialog.

Name Type a view name, as you wish to refer to it in
your code. The name must be a valid Clarion
label.

Description Type a string description for the view. Clarion
displays the descriptions in dialogs such as the
Dictionary dialog.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Press the >> button to type a separate
description (up to 1000 characters) in a larger
text box.

Filter Type an expression (such as PRE:Field1 > 1) to
limit the contents of the view to only those
records matching the filter expression. The filter
is independent of any keys defined for the files
referenced by the VIEW structure. In a Client/
Server environment the filter may not adversely
affect performance; in any other environment, it
may slow down file operations.

Add File Allows you to add a file to the View.

Add Field Allows you to add a field from the currently
selected file to the view.

Remove Removes the currently selected file or field from
the view.

❏ To add files and fields to the VIEW structure:

1. Press the Add File button.

2. In the Select Primary File dialog, choose a file and press the OK
button.

The file appears in the view list.

3. Back in the New View dialog, press the Add Field button.

4. In the Add Field dialog, CLICK on the fields you wish to include in
the view, then press the OK button.

The fields appear directly below the file in a tree diagram.

5. Repeat steps 1 through 4 for any additional files and fields you wish
to add to the view.

Only files already related to the current file may be added to the file
list below it.

6. Press the OK button to close the New View dialog.

To modify the view properties at a later time, highlight the view name on
the Dictionary dialog list, then press the Properties button.

CHAPTER 4 USING THE DICTIONARY EDITOR

ADDING OR MODIFYING FIELDS

Once you define a file, you may define its fields. Highlight the file in the
Dictionary dialog window and press the Fields/Keys button. If you
highlight an alias, the Dictionary Editor automatically displays the fields
in the original file. Any changes then modify the original file as well as
the alias.

The Field/Key Definition dialog contains two tabs. The Fields (left) tab
lists the fields. The Keys (right) tab lists the keys.

❏ To add a new field, select the Fields tab, then press the Insert
button.

❏ To modify an existing field, select the field name and press the
Properties button.

❏ To delete an existing field, select the field name and press the Delete
button.

❏ To move the selected field within the Fields list, press the ↑↑↑↑↑ and ↓↓↓↓↓
buttons. This reorders the field labels within the FILE structure.

When you add or modify a field, the New Field Properties or Edit
Field Properties dialogs appear when you press the Insert or
Properties buttons, respectively.

Defining Field Properties

The New Field Properties and Edit Field Properties dialogs allow you
to set field related options and attributes.

These dialogs are identical to the dialogs for defining and editing
memory variables. All the Clarion language attributes applicable to a
field in a file also apply to memory variables. There are a few additional

To add or edit fields and
keys, press the Fields/

Keys button.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

attributes that are only applicable to memory variables.

Clarion’s development environment uses the same dialog for defining
fields and memory variables, so that you don’t have to learn two separate
dialogs. Controls which refer to attributes applicable only to memory
variables are disabled when defining a field in a file.

The Dictionary Editor allows you to quickly add the fields one after
another. Each time you complete and close the New Field Properties
dialog for one field, another blank New Field Properties dialog appears,
ready for the next field. After completing the last field, press Cancel
when the blank dialog appears to return to the Field/Key Definition
dialog.

General

❏ To name the field, type a valid Clarion label in the Field Name field.
Valid field names may vary slightly according to the file driver.

❏ To add a text description, type it in the Description field. The
description appears in the list in the Field Properties dialog. Also,
see Comments below.

❏ To assign a field data type, choose one from the Data Type drop
down list. Clarion supports the following field types, which specify
how the data will be stored on disk by the file driver, and accessed in
memory by the application. The types available vary according to the
selected file driver.

STRING A fixed length character string, usually up to
65,520 characters in length, depending on the
file system.

MEMO A variable length text field, up to 65,520
characters in length. To specify that a memo
field may hold binary data, check the Binary
box. This is dependent on the file driver. Refer

The Field Pr oper ties
dialog pro vides

centralized access to a
wide range of field

attributes and
properties.

CHAPTER 4 USING THE DICTIONARY EDITOR

to the Database Drivers appendix for more
information on how each driver stores memos.

PICTURE Provides a “storage picture” for a String field.
Picture is not a separate data type, but declares
the field as a STRING of length and format
PICTURE. Fill in the Record Picture field with
the Storage Picture Token. Refer to the
Language Reference for a complete list of
PICTURE tokens, including examples.

CSTRING A character string terminated by a null, up to
65,520 characters in length. Corresponds to the
C Language string data type, and the “ZString”
field type in Btrieve.

PSTRING A character string with a leading length
indicator, up to 255 characters in length.
Corresponds to the Pascal Language string data
type, and the “LString” field type in Btrieve.

BYTE Can contain an unsigned integer, from 0 to 255.

SHORT Can contain an integer, from -32,768 to 32,767.

USHORT Can contain an integer, from 0 to 65,535.

LONG Can contain an integer, from -2,147,483,648 to
2,147,483,647.

ULONG Can contain an integer, from 0 to 4,294,967,295.

DATE Corresponds to the “Date” field type in Btrieve.

TIME Corresponds to the “Time” field type in Btrieve.

SREAL Can contain a real number between 0 ±
1.175494535e-38 and 0 ± 3.40282347e+38.
Corresponds to the Intel 8087 short real format.

REAL Can contain a real number between 0 ±
2.225073858507201e-308 and 0 ±
1.79769313496231e+308. Corresponds to the
Intel 8087 long real format.

BFLOAT4 A real number between 0 ± 5.87747e-39 and 0 ±
1.70141e+38. Corresponds to the four-byte
Microsoft BASIC single precision format.

BFLOAT8 Can contain a real number between 0 ±
5.87747e-39 and 0 ± 1.7014118346e+38.
Corresponds to the eight-byte Microsoft BASIC
double precision format.

DECIMAL Can contain a real number between -
999,999,999,999,999,999,999,999,999,999 and
9,999,999,999,999,999,999,999,999,999,999 in

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

a packed decimal format. It offers 31 digits of
precision. You must define at least one “place”
to the left of the decimal point.

Tip: The Decimal type generally provides the best all around
performance for mathematical calculations. The compiler
optimizes the operation by multiplying values by powers of
ten before processing; this greatly speeds up performance
on systems without math coprocessors, at no cost in
mathematical precision.

PDECIMAL Can contain a real number between -
999,999,999,999,999,999,999,999,999,999 and
9,999,999,999,999,999,999,999,999,999,999 in
a packed decimal format. It offers 31 digits of
precision. You must define at least one “place”
to the left of the decimal point.

GROUP A compound data structure that contains other
fields with various data types. This corresponds
to a C Language STRUCT.

Type the label for the group in the Field Name
field. With each successive New Field
Properties dialog, define the elements within
the group.

Tip: Use the ↑ and ↓ buttons to move fields into and out of the
Group.

BLOB Can contain variable length binary data larger
than 64K. Similar to memos, BLOBs (Binary
Large OBjects) are always variable length, with
no length specified. They are database driver
dependent, currently supported only by the
TopSpeed driver.

❏ To create a reference variable, check the Reference box. A
reference variable stores a reference to another variable, including
but not limited to its memory address. This box is enabled only
when defining memory variables. See the Language Reference for
more information.

❏ To assign a field length, specify a number in the Characters field. If
the field holds decimal places, specify a number in the Places field.

❏ To declare the field as an array, and to specify the array dimensions,
type them in the Dimensions fields. You can specify up to four
dimension sizes. Total array size may not exceed 65,520 bytes.

❏ To specify the record storage picture for a field, type a picture token

CHAPTER 4 USING THE DICTIONARY EDITOR

in the Record Picture field.

❏ To specify a screen picture, type a picture token in the Screen
Picture field. When the Application Generator creates window and
report controls for the field, this serves as the default display picture
for the control.

❏ To lock the screen picture, which specifies that it may not be
changed even if the field type is changed, press the “Lock” icon next
to the Screen Picture field.

❏ To specify the default prompt string, type it in the Default Prompt
field. The Application Generator places this text in the PROMPT
control associated with this field when it is populated onto a
window.

❏ To specify the default column title, type it in the Column Heading
field. The Application Generator uses this for reports.

Attributes

❏ To specify the case attribute for controls referencing the field, choose
from the Normal , Word Capitals or Upper case radio buttons, in the
Case group box. The Application Generator adds the CAP or UPR
attribute to the field’s entry control.

❏ To specify the default typing mode attribute for controls referencing
the field, choose from the Set Insert , Set Overwrite or Do Not
Reset radio buttons in the Typing Mode group box. The Application
Generator adds the INS or OVR attribute to the field’s entry control.

❏ To specify immediate event notification for controls referencing the
field, check the Immediate box in the Flags group box. The
Application Generator adds the IMM attribute to the field’s entry
control.

❏ To specify the data non-display attribute for controls referencing the
field, check the Password box. The Application Generator adds the

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

PASSWORD attribute to the field’s entry control. When an end user
types in an entry control referencing this field, the characters typed
appear on screen as asterisks.

❏ To specify the display only attribute for controls referencing the
field, check the Read only box. The Application Generator adds the
READONLY attribute to the field’s entry control.

❏ To specify justification for controls referencing the field, select from
the Justification drop down list. The Application Generator adds the
LEFT, RIGHT, CENTER or DECIMAL attribute to the field’s entry
control. LEFT left justifies the leftmost character. RIGHT right
justifies the rightmost character. CENTER centers the center
character. DECIMAL right justifies the decimal point (which hides
any digits to the right of the decimal point).

❏ To specify an offset to the justification, specify a number in the
Offset field. If justification is left, offset moves the lefmost character
back to the right. If justification is right, offset moves the rightmost
character back to the left. If justification is decimal, offset moves the
decimal point to the left, revealing fractional digits that would
otherwise be hidden. If justification is center, offset moves the center
character left for negative values and right for positive values. The
Application Generator uses this setting as the parameter for the
LEFT, RIGHT, CENTER or DECIMAL attribute of the field’s entry
control. The measurement unit is Dialog Units.

❏ To specify a default value for the field, type it in the Initial Value
field.

Tip: You can type a function or a variable in the Initial V alue
field in a file. For example, in a date field, you can add the
TODAY() function to make the initial value today’s date.
Functions and variables are not valid initial values for
memory variables, i.e. Global Data, Local Data, and Module
Data.

❏ To specify an external name for the field, type it in the External
Name field. This covers cases where the field label within the
program is different than the name of the field in the data file; for
example, you may be accessing a field through an ODBC connection
to a database which contains a field name that is not a valid Clarion
label. Place the name of the field as it exists in the data file here.
This creates the field’s NAME attribute.

❏ To declare the field as an overlay, select another field name from the
Place Over drop down list. This allows the current field to redefine
the other field’s location in memory. This adds the OVER attribute to
the field’s declaration.

CHAPTER 4 USING THE DICTIONARY EDITOR

❏ The Storage Class drop down list is enabled only when defining
memory variables. This selection sets the EXTERNAL, STATIC,
and AUTO attributes for memory variables, which determines
memory allocation for those variables. See the Language Reference
for more information.

Comments

❏ To add a comment or text description, select the Comments tab to
type up to 1000 characters.

Options

❏ To cause Clarion’s Wizards to omit this field from browses, forms,
and reports, check the Do Not Populate This Field box.

❏ To specify where Clarion’s Wizards will place this field on browses,
forms, and reports use the Population Order drop down list.
Normal populates fields in the same order they appear in the Data
Dictionary. All First fields are placed before all Normal and Last
fields. All Last fields are placed after all First and Normal fields.

❏ To tell Clarion’s Wizards which property sheet tab will contain this
field, use the Form Tab drop down list.

❏ To cause Clarion’s Wizards to add extra vertical space before this
field on form procedures, check the Add Extra Vertical Space
Before Field Controls on Form Procedures box.

❏ To specify User Options, type free form text into the User Options
field. The text typed into this field is made available to any Utility
Templates that process this file. The individual Utility Templates
determine the proper syntax for these user options.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Help

❏ To specify a Help ID for controls referencing the field, specify a help
topic in the Help ID field. The Application Generator adds the HLP
attribute to the field’s entry control.

❏ To specify a status bar message for controls referencing the field,
type the message in the Message field. When the control referencing
the field has focus, the text appears on the status bar, provided the
application in which the control appears has one. The Application
Generator adds the MSG attribute to the field’s entry control.

❏ To specify a popup message for controls referencing the field, type
the message in the Tool Tip field. When the control referencing the
mouse is idle over the field, the text appears immediately below the
mouse in a popup box. The Application Generator adds the TIP
attribute to the field’s entry control.

Validity Checks

To check an entry when the user completes the field, select the Validity
Checks tab in the Field Properties dialog, then choose a validation
option by clicking on one of the radio buttons.

The Application Generator uses this information when creating and
maintaining controls. When the user tabs off the field and shifts focus to
another control, or presses OK on the data entry dialog, the application
will sound a warning beep and set focus back to the control if the data
entered is not valid.

Tip: When setting a validity check, provide the user with a helpful
status bar message. For example, if you specify that a numeric
field must hold a value between 1 and 50, place a message such
as “Type a number between 1 and 50” in the Message field (see
Help Tab above).

Using the Validity
Checks tab to specify a
limited range of values

for a field.

CHAPTER 4 USING THE DICTIONARY EDITOR

The validity checks constrain data entry to the criteria you select:

❏ To disable validity checking, choose No Checks . This is the default.

❏ To require a user entry without specifying any other criteria, choose
Cannot be Zero or Blank . The Application Generator adds the REQ
attribute.

The REQ attribute behaves differently for tabbed dialogs than for
single page dialogs. Because the user has the option of never even
selecting secondary tabs (pages), special steps are required to
enforce entry of required fields that reside on secondary tabs:

Put all required fields on the first tab; add the REQ attribute to the
tab and to the required entry fields; or

Make a (see also)"Wizard"; or

Embed code at the beginning or end of the procedure that selects all
tabs with required fields; add the REQ attribute to the required entry
fields and to their parent tabs.

❏ To specify the entry fall between two numeric values, choose Must
be in Numeric Range . Then enter the two values in the Lowest and
Highest fields.

By entering only a lowest, or only a highest value, you can specify
an open ended range.

❏ To specify a logical binary entry (yes/no, true/false, off/on), choose
Must be True or False . This feature works best with the BYTE data
type and a check box screen control.

❏ To specify the value match a field in an external file, choose Must be
in File . Choices will appear in the File Label drop down list only if
you previously related another file or files. See Adding or Modifying
Relations later in this chapter.

❏ To specify the value match an entry in a list, choose Must be in List .
Then type the choices in the Choices field, in the format “Choice1|
Choice2|Choice3.” Separate the choices with a pipe (|) character
(usually SHIFT+\).

Tip: If you plan to allow the end user to choose a limited number
of choices from a list box, drop down list, or radio buttons,
type the choices and separate them with a pipe symbol, or
vertical bar character (|).

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Window

Use the Window tab in the Field Properties dialog to specify how a
particular field will be presented to the user in the windows environment.
Remember, this specification is the default presentation method. By
defining it here in the data dictionary, you establish a standard method of
presenting the field which will be used every time you place the field on
a Clarion window. This means you need only design your presentation
method once, no matter how many times your application makes use of
this field, and no matter how many applications use this dictionary; but
you still retain the ability to modify this default presentation in any
particular case.

Customarily, field data have been presented to the end user with two
controls: a prompt and a simple entry box, called an entry control. The
prompt is simply the label or heading on the computer screen or report
that identifies the data item. The entry control is the area on the screen or
report where the data item is represented (printed or typed). For example,
in the following illustration, “Date:” is the prompt, the underscore is the
entry control, and “Sep 1, 1995” is the data item.

Date: Sep 1, 1995

In the windows environment, a data item may be presented to the end
user in a variety of ways. Most of these methods still use a simple
prompt, but the entry control varies widely. Entry controls include entry
boxes, list boxes, drop down lists, check boxes, radio buttons, spin
boxes, etc.

To customize the default characteristics for prompts and entry controls
for a field, select the Window tab, in the Field Properties dialog.

Tip: By choosing the properties for a control at this time, you
can save time later. Every application you generate from the
dictionary, and every procedure in the application will
automatically format the control according to the dictionary.
If you don’t format it here, and if the control requires custom
formatting, you will have to custom format it for each use in
a procedure and application later.

CHAPTER 4 USING THE DICTIONARY EDITOR

Select either the prompt or entry field from the Window Controls list,
then press the Properties button. The prompt is the label which appears
next to the control on your application window or report. The entry field
is the control which actually accepts user input.

❏ To customize the default prompt, select the PROMPT item in the
Window Controls list box, then press the Properties button (or
simply DOUBLE-CLICK the prompt item) to display the Prompt
Properties dialog. See the Setting Control Properties chapter for
details.

❏ To customize the default entry control, select the ENTRY, LIST, or
other entry control item in the Window Controls list box, then press
the Properties button (or simply DOUBLE-CLICK the item) to display
the Entry Pr operties dialog. See the Setting Control Properties
chapter for details.

❏ To change the type of entry control, first select the ENTRY item you
want to change in the Window Controls list box, then in the
Control Type list, select a new control type.

❏ To change prompt and entry controls back to their default values,
press the Reset Controls button.

Tip: If you specified Must be True or False on the Validity
Checks tab for a numeric value, the Screen Control will
default to a check box. You may edit the check box
properties.

Report

To customize the default characteristics for report controls for a field,
select the Report tab in the Field Properties dialog.

❏ Highlight the control from the Report Controls list by clicking on
it, then press the Properties button. The String Properties dialog

Preformatting an ENTRY
control.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

appears. See the Using the Report Formatter chapter for details.

❏ To change the default report string control to an option control,
check the Option Control box. You must have previously defined
the Must be in List choices on the Validity Checks tab.

Tip: If you specified Must be True or False in the Validity
Checks tab for a numeric value, the Report Control will
default to a check box. You may edit the check box
properties.

ADDING OR MODIFYING KEYS

Add and edit keys and indexes for your database in the Field/Key
Definition dialog. The Data Dictionary generates the correct FILE
structure declaration based on the choices you specify in the dialog
boxes.

Keys and indexes specify sort orders for a single data file. A key may
reside within the file itself, or as an external file, depending on the file
system.

Keys are automatically updated whenever records are added, changed,
or deleted. Indexes are not. The Database Drivers appendix provides
more information regarding how each file driver supports keys or
indexes.

Indexes usually exist as external files. Remember that a separate DOS
file handle is necessary for each external key or index file. Index files are
not updated automatically. The BUILD statement updates an index.

A runtime index allows you to declare an index file without specifying
the key component field(s) in the Data Dictionary. The application must
define the key component field(s) at run time, as the second parameter of
the BUILD statement. The application may rebuild the same index file at
a later time, specifying different key component field(s) for the index
key.

The basic steps for creating a key are:

1. Select a file from the list on the Files side of the Dictionary dialog
and press the Field/Keys button.

2. In the Field/Keys Definition dialog, select the Keys tab to change
focus to the Keys list.

3. Highlight a key (if one exists), then press the Insert button.

The New Key Properties dialog appears.

CHAPTER 4 USING THE DICTIONARY EDITOR

4. Type a valid Clarion label in the Key Name field.

5. Optionally type a Description . This displays in various dialog
boxes, including the File Definition dialog.

6. Select the Attributes tab and check all boxes that are appropriate for
the key.

7. Optionally type a valid DOS file name in the External Name field,
if the file system needs one.

Clarion automatically adds the proper extension.

8. Select the Fields tab, then press the lnsert button.

The Insert Key Component list appears.

9. DOUBLE-CLICK a field in the list; this transfers its name to the Fields
tab, which indicates the field will be part of the new key.

10. Press OK to close the New Key Properties dialog.

The New Key Properties dialog appears again, ready to accept
additional keys.

11. Repeat steps 4 through 10 to create additional keys for this file.

12. When you are finished adding keys, press Cancel to close the New
Key Properties dialog and return to the Field/Keys Definition
dialog.

At the end of the process, your keys appear on the Keys tab, with their
field components arranged in order, one above the other in a tree
diagram.

To modify a key, select the key and press the Properties button in the
Field/Key Definition dialog. The Edit Key Proper ties dialog appears. If
you selected a key component, the Fields tab is on top. If you selected
the key, the General tab is on top. The Setting Key Properties section,
below, describes the options in this dialog.

The Field/Keys
Definition dialog

displays the fields and
keys for a single file.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Setting Key Properties

The following tabs and fields appear in the New Key Properties and
Edit Key Properties dialogs. They set the attributes for the key.

General

Key Name To specify a Clarion label for the key, type a
valid Clarion label in this field.

Tip: Remember that you cannot give a key the same name as
one of the fields within the RECORD. One common
convention is to use the field name plus the word “key,” as in
LastNameKey.

Description To place a text description for the key in the
Data Dictionary, type it in this field. The
description appears on Wizard generated tabs
and in dialogs such as the File Definition
dialog. If you anticipate using many keys for
your application, we recommend providing brief
meaningful descriptions.

Type To specify a record key, a static index, or
runtime index, choose one of the radio buttons
in the Type group. Remember, record keys are
automatically updated whenever records are
added, changed, or deleted. Indexes are not
automatically updated, but require a BUILD
statement. The Static Index and Run Time
Index options are disabled when the Require
Unique Value check box is marked on the
Attributes tab, because indexes always allow
duplicates.

Defining a primary key.

CHAPTER 4 USING THE DICTIONARY EDITOR

Attributes

External Name To optionally specify a DOS file name for an
external key, type a valid DOS file name in this
field. Clarion automatically adds the proper
extension. The Application Generator adds the
NAME attribute to the KEY statement. Some
file systems require an external name. See the
Database Drivers appendix for more
information.

Require Unique Value
To disallow multiple records with duplicate
values in their keys, check this box. This option
is valid only for record keys, and is disabled for
indexes. The Application Generator adds the NO
DUP attribute to the KEY statement.

Primary Key To establish the current key as the Primary key,
check this box. The Application Generator adds
the PRIMARY attribute from the KEY
statement. This may be required for certain file
drivers. See the Database Drivers appendix for
more information.

Auto Number To specify the Application Generator should
create code to manage record sequence
numbers, check this box.

Case Sensitive To sort according to case, check this box. When
creating or updating the key, all capital letters
will precede lower case letters, as per their
positions in the ASCII table. The Application
Generator omits the NOCASE attribute from the
KEY statement.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Exclude Empty Keys
To exclude records with a null or zero value in
the key component fields from the key file, check
this box. The Application Generator adds the
OPT attribute to the KEY statement.

Note: The primary key must be unique and must
exclude nulls. Checking the primary key option has exactly
the same effect as checking both Require Unique Value and
Exclude Empty Keys.

Comments

Optionally select the Comments tab to enter up to 1000 characters
of description.

Options

Do Not Auto-Populate This Key
To cause Clarion’s Wizards not to generate
browses, forms, or reports based on this key,
check this box.

Population Order To specify where Clarion’s Wizards will place
this field on browses, forms, and reports, use the
Population Order drop down list. Normal
populates fields in the same order they appear in
the Data Dictionary. All First fields are placed
before all Normal and Last fields. All Last
fields are placed after all First and Normal
fields.

User Options To pass information to any Utility Templates
that process this key, type the information here.
The text typed into this field is made available to
any Utility Templates that process this key. The
Utility Templates determine the proper syntax
for these user options.

CHAPTER 4 USING THE DICTIONARY EDITOR

Fields

Specify the components of the keys (the sort field or fields) using the
Fields tab of the Edit Key Properties dialog. You may specify more
than one field for a key. You may mix data types when defining a key on
multiple fields. You may also specify different orders—one field
ascending, one field descending—when defining a key on multiple
fields, however, mixing sort order is file driver dependent. See the
Database Drivers appendix for more information.

Key Fields List To add fields, or components, to your key, press
the Insert button. The Insert Key Components
list then shows you the available fields. DOUBLE-
CLICK on the name of a field in the list to place
its name in the Key Fields List .

Sort Order To specify the sort sequence of your key
component, choose either the Ascending or
Descending radio button.

Component Order You can change the order of the components of a
key. To move a component up in the order, select
it in the Key Fields List , then press the ↑↑↑↑↑
button. To move a component down in the order,
select it in the Key Fields List , then press the ↓↓↓↓↓
button.

Specifying a key
component.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

ADDING OR MODIFYING RELATIONS

Define relationships between files in the New (or Edit) Relationship
Properties dialog. The relationships appear in the Related Files list on
the right side of the Dictionary dialog, for the currently selected file.

The basic steps in setting up a relationship are:

1. Select a file from the Files list on the left side of the Dictionary
dialog.

2. Press the Add Relation button.

The New Relationship Properties dialog appears.

3. Select the relationship Type from the drop down list.

You may choose between a One-to-Many (1:Many) relationship or a
Many-to-One relationship (Many:1). The 1:Many relationship
defines a situation where one record in a file relates to many records
in another file. For example, the Customer file contains only one
record for customer Katy, but the Order file may contain many
records for customer Katy, because Katy is a good customer that has
ordered many items.

In the above example, it doesn’t matter which file you start with. If
you selected the Customer file first, the type of relationship is
1:Many , but if you selected the Order file first, you would specify a
Many:1 relationship.

The label for the group box immediately below will change to Child
or Parent , depending on your choice.

4. Select the Related File from the drop down list.

The records in the two files, have one thing in common that relates
them: the customer number. For example, the customer number for
Katy might be 629, so the customer number for Katy’s orders will
also be 629. Thus the customer number will be the “Key” to this file
relationship.

5. Select the Primary Key or Foreign Key for the first file from the
drop down list at the top right of the dialog.

Clarion automatically changes the label for the drop down list (either
Primary Key or Foreign Key) according to the relationship type.

A Primary Key is always unique within the file for which it is
primary. In our example there should be exactly one (i.e., unique)
customer number 629 in our customer file. Otherwise, we could
easily confuse information belonging to Katy (customer 629) with
information belonging to a different customer with the same
customer number. So customer number is the Primary Key for the
Customer file.

CHAPTER 4 USING THE DICTIONARY EDITOR

A Foreign Key need not be unique, but it should match the primary
key in another file. In our example, there is only one customer
number 629 in our Customer file. However, because Katy (customer
629) has submitted several orders, customer number 629 appears
several times in the Order file. So customer number is also a key to
this file relationship, but it is the Foreign Key.

6. Select the Primary Key or Foreign Key for the related file, if
applicable, from the drop down list immediately below the first drop
down list.

7. Press the Map by Name button to establish the link between the two
keys by matching field names within the two keys.

The Field Mapping lists show the actual links established between
the two files.

This mapping step is required because the keys in the two files are
not always defined exactly the same way. For example, the
Key_CustNumber in the Customer file might consist of CustNumber
and LastName, while the Key_CustNumber in the Order file might
consist of CustNumber only. Mapping ensures that keys made up of
multiple components, or fields, are handled correctly.

8. Optionally set Referential Integrity Constraints by choosing from the
On Update and On Delete drop down lists in the Referential
Integrity Constraints group box.

See the section below for more information on Referential Integrity
Constraints.

9. Press the OK button.

The new relationship appears in the Dictionary dialog.

Defining a one to many
relationship, including
key field mapping and

referential integrity.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Setting Referential Integrity Constraints

By setting referential integrity constraints in the data dictionary, you can
tell the Application Generator how to set up executable code for handling
linked field updates and deletions when working with related data files.

Referential Integrity requires that a foreign key must always have a
match in the primary key. This raises potential problems when the end
user wishes to change or delete the primary key record.

The New Relationship Properties dialog allows you to specify how the
generated code will handle the situations where one of several related
records is updated or deleted.

No Action Tells the Application Generator to generate no
code to maintain referential integrity.

Restrict Tells the Application Generator to prevent the
user from deleting or changing an entry, if the
value is used in a foreign key. For example, if
the user attempts to change a primary key value,
the generated code checks for a related record
with the same key value. If it finds a match, it
will not allow the change.

Cascade Tells the Application Generator to update or
delete the foreign key record. For example, if the
user changes a primary key value, the generated
code changes any matching values in the foreign
key. If the user deletes a parent record, the code
deletes the children too.

Tip: The templates provide support for Referential Integrity for
as many levels of relationships as are defined in the Data
Dictionary.

Clear Tells the Application Generator to change the
value in the foreign key to null or zero.

MANAGING YOUR DICTIONARY

The Dictionary Editor provides several features to help you better
manage your data dictionaries.

◆ You can copy and paste file and field definitions from one dictionary
file to another.

CHAPTER 4 USING THE DICTIONARY EDITOR

◆ The Dictionary Editor offers version management, which allows you
to document your changes when you make significant revisions. It
also allows for rollback abilities, so that you can “undo” your
revisions.

◆ The Dictionary Editor offers custom setup options which, for
example, allow you to define the default file driver.

Copying And Pasting

You can use the Copy and Paste commands to copy a file or field
definition from one dictionary to another. To do so:

1. Open a dictionary file.

2. Select a file from the Files list in the Dictionary dialog.

3. Choose Edit ➤ Copy , or press CTRL+C.

4. Open a second dictionary file.

5. Choose Edit ➤ Paste , or press CTRL+V.

After pasting, the New File Properties dialog appears. You can modify
the file definition as you wish. After you press the OK button, the file
appears in the Dictionary dialog for the second dictionary.

Copying and pasting fields from one file to another works similarly,
except that you must have the Field/Keys Definition dialogs open,
rather than the Dictionary dialog. The limitations are that the target file
must support the field type being copied.

Tip: You can copy a Data Dictionary item, such as a file or a field,
into the clipboard, then paste it into the Text Editor (and vice
versa)!

Dictionary Revisions

 A new dictionary automatically starts with version 1.0. You can see the
version number/revision number on the caption bar of the Dictionary
dialog. The Dictionary Properties dialog also displays the original
creation date and time, and the last modified date and time.

You should increase the revision number, manually, whenever you make
significant changes to a dictionary. From the Dictionary dialog, choose
Version ➤ Checkpoint . A revision number (r. #) is added to the caption
bar. The revision number increases with each new “checkpoint.”

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

To roll back to a previous revision, choose Version ➤ Revert . Choose
the revision to revert to by selecting it with the spin control in the
Previous Revision dialog.

Dictionary Editor Setup Options

You can customize some of the default dictionary settings in the
Dictionary Options dialog. To access the dialog, choose Setup ➤
Dictionary Options .

File Options

❏ To select the default database driver for new dictionaries, choose
from the Default Driver drop down list.

❏ To see the Dictionary dialog’s Files list in alphabetical order, check
the Sort dictionary files alphabetically box.

❏ To select the THREAD attribute (setting aside a separate RECORD
buffer for each procedure) as the default for new file definitions,
check the Default THREAD Attribute box.

❏ To see file descriptions in the Dictionary dialog’s Files list, check
the Display File Description box.

❏ To see file drivers in the Dictionary dialog’s Files list, check the
Display File Driver box.

❏ To see the file prefix in the Dictionary dialog’s Files list, check the
Display File Prefix box.

CHAPTER 4 USING THE DICTIONARY EDITOR

Field Options

❏ To specify that the field descriptions you type when defining a field
should also serve as the text for the Message field (status bar
message), check the Assign Description to Message box.

❏ To see the field description in the Field/Key Definition dialog,
check the Display Field Description box.

❏ To see the field type in the Field/Key Definition dialog, check the
Display Field Type box.

❏ To see the field picture in the Field/Key Definition dialog, check the
Display Field Picture box.

❏ To see the field prefix in the Field/Key Definition dialog, check the
Display Field Prefix box.

Key Options

❏ To see the key description in the Field/Key Definition dialog, check
the Display Key Description box.

❏ To see the key type in the Field/Key Definition dialog, check the
Display Key Type box.

❏ To see the unique flag in the Field/Key Definition dialog, check the
Display UNIQUE Flag box.

❏ To see the primary key status in the Field/Key Definition dialog,
check the Display Primary Key Status box.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

❏ To see other key attributes in the Field/Key Definition dialog, check
the Display Other Key Attributes box.

❏ To see the key prefix in the Field/Key Definition dialog, check the
Display Key Prefix box.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

You can customize, add or
delete templates; you can
also regenerate .TPL files
using the Template
Registry.

UUUUUSINGSINGSINGSINGSING THETHETHETHETHE A A A A APPLICPPLICPPLICPPLICPPLICAAAAATIONTIONTIONTIONTION G G G G GENERAENERAENERAENERAENERATTTTTOROROROROR

The Application Generator writes
source code for you, based on the
procedure templates you pick, and
your customization of the procedures.
The Application Generator calls other
development environment tools as
needed.

You start by defining the
.APP file, which stores the
procedures you select and
your customizations.

55

The Procedure Pr operties
dialog acts as a “hub” from
which you call other
Development Environment
tools to customize the
procedure.

The Application Tree lists
your procedures. Those you
have not yet “filled in” are
marked as “To Do.”

CHAPTER 5 USING THE APPLICATION GENERATOR

When you use the Application Generator, you create procedures for the
major tasks you want your application to do, you describe how the
application accomplishes the tasks, and how its windows, dialogs and
reports appear to the end user. The Application Generator, draws from
the Template Registry, the Data Dictionary, and the information you
provide, to write the source code for the application.

This chapter describes how to complete all the dialogs the Application
Generator needs to generate source code:

◆ How to begin a new application by creating an .APP file.

◆ How to set global application properties.

◆ How to add procedures to the application.

◆ How to fully customize your procedures.

◆ How to set application options.

◆ How to maintain your templates and the REGISTRY.TRF file.

◆ How to import and export procedures.

CREATING THE .APP FILE

The first step in creating a new application (after creating a Data
Dictionary) is to create an .APP file. The .APP file holds the procedures,
data, and other properties you define for your application, that is,
everything necessary to generate source code, then make an executable
program.

Tip: You may want to create a new directory for each application
you develop because whenever you open an .APP file,
Clarion for Windows will use the directory in which the .APP
file resides as the working directory.

1. Optionally, in File Manager or Windows Explorer, choose File ➤
Create Directory or File ➤ New ➤ Folder, type a subdirectory or
folder name and press OK (or use the DOS prompt, and the MkDir
command).

2. Start Clarion and choose File ➤ New.

The New dialog appears.

3. On the Application tab (CLICK on it) uncheck the Quick Start
Wizard box by CLICKING on it.

See Chapter 3 in the Getting Started manual for more information on
using Quick Start .

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

4. Use the Drives drop box and the Folders box to navigate to your
application directory, then press the Create button.

The Application Properties dialog appears. This dialog allows you
to define the essential files for the application.

5. Type a name for the .APP file in the Application File field.

Type a legal DOS file name (must also be a valid Clarion label, see
the Language Reference for more information). Clarion
automatically adds the .APP extension. Clarion will use the path you
defined on the New dialog. Alternatively, you can press the ellipsis
(...) button to define a path for your .APP file.

6. Type a name for the .DCT file in the Dictionary File field, or press
the ellipsis (...) button to select the dictionary file from the Select
Dictionary dialog.

See the previous chapter for information on creating your
application’s data dictionary. The Select Dictionary dialog is a
standard Open File dialog.

Tip: The Application Generator will not require a data dictionary
to generate an application if you uncheck the Require a
dictionary box in the Application Options dialog, described
later in this chapter.

7. Optionally rename the first procedure from MAIN to another name
of your choice.

You can do so by typing another procedure name in the First
Procedure field.

8. Choose the Destination Type from the drop down list.

This defines the type of target file for your application. Choose from
Executable (.EXE), Library (.LIB), or Dynamic Link Library
(.DLL).

9. Type a name for the application’s .HLP file in the Help File field, or
use the ellipsis (...) button to select one from the Select Help File
dialog.

The Application Generator does not require that the .HLP file exist at
this point. You can also name help topics that do not exist at this
point.

Defining a new .APP file
called TUTORIAL.APP,

using a data dictionary
called TUTORIAL.DCT.

CHAPTER 5 USING THE APPLICATION GENERATOR

However, you are responsible for creating a Windows Standard .HLP
file that contains the context strings and keywords that you enter as
HLP attributes for the various controls and dialogs. There are many
third party products that help you do this.

10. Choose the Application Template type.

Accept the default (Clarion), or press the ellipsis (...) button to select
from a third party template set. The application template controls
source code generation.

11. Uncheck the Use Application Wizard box by CLICKING on it.

Checking this box will cause the Application Generator to use your
dictionary to create an entire working application. In this chapter, we
will build an application without using the Application Wizard .

12. Press the OK button.

Clarion for Windows creates the .APP file, then displays the
Application Tree dialog for your new application.

OVERVIEW: CREATING YOUR APPLICATION

Once the .APP file exists, you design your application through a series
of dialogs. When you create your application’s menus and toolbars, they
will call procedures that you name. The Application Generator adds
these “To Do” procedures to the application tree. You “fill-in” their
functionality by picking from a set of procedure templates. Use the
Window and Report Formatters to design how your application looks to
the end user.

Following is an overview illustrating the tasks which you normally
complete when building an application with the Application Generator.
The Tutorial in the Getting Started manual provides a more detailed
description.

❏ Define the Main procedure type.

❏ Customize the application’s menu, adding menu commands and the
procedures they execute.

❏ Add functionality to your procedures.

❏ Choose the files the procedures use.

❏ Add local variables.

❏ Use the Window Formatter to design your windows.

❏ Generate the source code and make the application.

❏ Test the application by pressing the Run button in the Compile
Results dialog.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

❏ Define the Main procedure type.

Press the Properties button to access the Select Procedure Type
dialog. This lists the procedure types available in the currently
registered templates.

Select the Frame procedure type for Main from the Select
Procedure Type dialog and press the Select button.

The Frame template procedure is usually the best starting point for a
typical application which employs different MDI child windows to
present data in different views and forms. This template procedure
contains an MDI application frame, which already includes fully
functional standard windows menus like File, Edit and Help .

The Procedure Main Properties dialog appears. Normally, each
procedure already contains defaults or starting points for such
elements as the application window, a basic menu structure, reports
and more. These default procedures are designed with real world uses
in mind, such as forms (a window that displays a single record) for
updating a database record. When developing an application, you can
customize these procedures to fit your needs.

The Application Tree dialog
for a new application. It

contains one MAIN
procedure, whose

functionality is still “ToDo.”

Select the procedure type
from a list of available
procedure templates.

CHAPTER 5 USING THE APPLICATION GENERATOR

❏ Customize the application’s menu, adding new menu commands and
the procedures they execute.

Access the Window Formatter by pressing the Window button.
When the Window Formatter appears, go directly to the Menu
Editor : choose Menu ➤ Menu Editor. The Menu Editor dialog
appears. See the Creating Menus and Toolbars chapter for details on
editing the menu.

Typically, you add a menu item by pressing the New Item button.
Then, select the Actions tab to specify the procedure or program to
execute when the end user chooses that menu item. Once you type in
the procedure name, the Application Generator adds the procedure to
the Application Tree as a “To Do.”

When creating an Multiple Document Interface (MDI) application,
check the Initiate Thread box when prompted.

Press the Close button to close the Menu Editor , saving your
changes. Press Exit! to exit the Window Formatter and save your
changes.

❏ Add functionality to your procedures.

Select the first “ToDo” procedure in the Application Tree and press
the Properties button. The “ToDo” items are the procedure or
procedures you named with the Menu Editor .

Select a Procedure type from the Select Procedure Type dialog and
press Select . At this point, you might choose, for example, a Browse
template, which displays records in a list box.

If you check the Use Procedure Wizard box, the Browse Wizard,
Form Wizard , or Report Wizard will prompt you for all information
necessary to complete your procedure. Otherwise, proceed manually:

❏ Choose the files that the procedure uses.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

From the Procedure Properties dialog, press the Files button to
open the File Schematic Definition dialog, then choose the files
and keys the procedure will use. See the Defining Procedure Files
section below for detailed instructions. By adding files to the
schematic, you allow the procedure to access them.

❏ Add local variables.

Press the Data button in the Procedure Properties dialog. The
Defining Procedure Data section, below, describes this process in
detail. Essentially, you declare each variable in much the same way
you define a field in a data file.

❏ Use the Window Formatter to design your windows.

In the Procedure Properties dialog, press the Window button;
when the Window Formatter appears a sample window is
diaplayed. Depending on the procedure template you chose,
predefined controls may appear in the window.

Everything that appears in a window is a control, including buttons,
list boxes, check boxes, spin boxes, data entry fields, etc. Select a
control, then choose Edit ➤ Properties and Edit ➤ Actions to
specify the appearance and behavior of the control. See the Using
Control, Code, and Extension Templates, Using the Window
Formatter, and Setting Control Properties chapters for more
information.

Use control templates (Populate menu) to place “prefabricated”
controls, that is, fully functional controls with associated source
code that is maintained by the Application Generator. For example, a
BrowseBox template is a list control with associated code that loads
and scrolls the list. Modify the code simply by changing settings in
the Window Formatter.

Use controls (Control menu) to place “do it yourself” controls, that
is, controls with no associated source code.

Use fields (Populate menu) to place “some assembly required”
controls, that is, entry controls that are automatically loaded with
data dictionary field or a memory variable values.

❏ Generate the source code and make the application.

Press the Make (lightning bolt) button on the toolbar to generate
source, compile, and link the application. The Application Generator
automatically maintains the compile and link information for the
application.

❏ Test the application by pressing the Run button in the Compile
Results dialog.

After testing your first procedure, you can then go on to add more
procedures, embed custom source code, and otherwise add
functionality to your application.

CHAPTER 5 USING THE APPLICATION GENERATOR

SPECIFYING GLOBAL PROPERTIES

You can specify a number of defaults that will apply to your entire
application. You can also specify memory variables to share throughout
your application. These “global” settings are specified with the Global
Properties dialog.

Global Data Variables

All application global variables must be declared before the CODE
statement in your PROGRAM module (see the Language Reference for
more information). The easiest way to accomplish this is to set up your
global variables using the Global Properties dialog.

To access the Global Properties dialog, go to the Application Tree
dialog and press the Global button.

To add global data variables, press the Data button in the Global
Properties dialog:

❏ To add a new variable to the list:

1. Press the Insert button.

2. Fill in the New Field Properties dialog.

The New Field Properties dialog is the same dialog used to add a
field to the Data Dictionary. You can set the data type, length, label,
etc. in this dialog. See Adding or Modifying Fields in the previous
chapter.

3. Press the OK button to close the New Field Properties dialog.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

4. Press the Close button to close the Global Data dialog.

❏ To change the data type or label of a global variable:

1. Highlight the variable in the Global Data dialog list.

2. Press the Properties button.

3. Make any changes necessary in the Edit Field Properties dialog and
press OK .

4. Press the Close button to close the Global Data dialog.

❏ To move a variable up in the list, highlight it, then press the ↑↑↑↑↑
button.

❏ To move a variable down in the list, highlight it, then press the ↓↓↓↓↓
button.

General Application Properties

The following specifications are available on the General tab of the
Global Properties dialog:

A list of variab les. The
variable types and other

properties are defined in
the Field Pr operties dialog,

which you access by
pressing the Properties

button.

CHAPTER 5 USING THE APPLICATION GENERATOR

Program Author Record bragging rights here.

Use field description as MSG() when MSG() is blank
Tells the Application Generator to use the Data
Dictionary field description as the MSG
attribute parameter, when no other parameter is
specified. In other words, the field description
becomes the default status bar message for each
field in your application.

Generate global data as EXTERNAL
Adds the EXTERNAL attribute to your global
variable declarations (see the Language
Reference). This means your program will rely
on an external library to allocate memory for
these variables, and to declare them as public
variables so your program can access them.

NOTE: If you are creating an application that consists of more
than one AppGen created DLL, you MUST check the
“Generate Internal Global Data as EXTERNAL” check box for
all DLLs except one. Likewise, you MUST check the
“Generate Internal Global Data as EXTERNAL” check box for
each APP creating an .EXE.

Generate EMBED Comments
Tells the Application Generator to surround your
embedded source code with comments that
make your embedded source easy to find within
the generated source code.

.INI File Support

The Clarion template set supports .INI (standard windows initialization)
files. This file is an ASCII file which stores settings for an application
between sessions.

One use for the .INI file is to store the user’s preferred window positions
for the next session. Many of Clarion’s default procedures allow you to
do this, provided you enable .INI file support.

❏ To enable automatic .INI file support:

1. Select the General tab in the Global Properties dialog.

2. Check the Use .INI file to save and restore program settings box.

3. Specify the .INI file name

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

To specify the same file name as the .EXE, with an .INI extension,
choose Program Name.INI from the .INI file to use drop down list.
To specify a different name, choose Other in the drop down list, then
fill in the Other File Name field.

4. Press the OK button to close the Global Properties dialog.

When your application needs to revise the value in the .INI file, use
the PUTINI statement. To read a value from the INI file, use the
GETINI statement. See the Language Reference for details.

Tip: If your application requires dozens or even hundreds of
variables to store from session to session, don’t put them in
an .INI file. Retrieving a variable from a .INI file is relatively
slow. Also, if you need to hide the information from the end
user, remember that .INI files are text files, and are easily
accessible.

Specifying Other Global Properties - File Control

The Global Properties dialog also allows you to override some of the
settings in your data dictionary. You can also define how procedures will
access files. You can specify these file attributes for all files, or for each
file individually. To access these features, select the File Control Flags
tab.

Generate all file declarations
Checking this box tells the Application
Generator to declare all files in the Data
Dictionary, whether or not they are used within
the application. By declaring all files, you can
reference the files in any hand coded source you
may add to your application.

CHAPTER 5 USING THE APPLICATION GENERATOR

When done with a File
Specifies whether the application automatically
closes each file when a procedure is finished.

Tip: One way you can design your application to be a well
behaved Windows application is not to hog system
resources. One limited resource is file handles. You can
“give back” file handles not in use by selecting Close the
File from the drop down list.

Enclose RI code in transaction frame
Enables rollback of data if an update fails during
a Referential Integrity maintenance operation.

Tip: If all files in a relation chain are using the same file system,
and the file system supports transaction framing, and you
do not want transaction framing around the RI code, you
must clear the check box for each file in Individual File
Overrides and in Global Settings.

Issue template warning if LOGOUT() not allowed
When your data dictionary includes a file driver
which does not support the LOGOUT statement
(used in the Referential Integrity checking
routines), checking this box enables a warning
at compile time.

You should be sure that this check box is
unchecked for drivers such as dBase III. See the
Database Drivers appendix for more
information.

Threaded Specifies whether the application generator will
add the THREAD attribute to FILE structures.

THREAD is needed for MDI browse and form
procedures, to prevent record buffer conflicts
when the end user changes focus from one
thread to another.

Use File Setting sets the THREAD attribute
according to the data dictionary. All Threaded
and None Threaded are self explanatory.

Create Specifies whether your application should allow
the creation of a data file should it not exist.
Adds the CREATE attribute to the FILE
structure.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Use File Setting sets the CREATE attribute
according to the data dictionary. Create All and
Create None are self explanatory.

External Specifies whether the EXTERNAL attribute is
added to your application files. EXTERNAL
specifies that the file is defined in an external
library and therefore may be referenced in the
Clarion code. The memory for the FILE’s record
buffer is allocated by the external library. See
the Language Reference for more information.

None External omits the EXTERNAL attribute
from all file declarations. All External adds the
EXTERNAL attribute to all file declarations and
allows you to specify the Declaring Module
and whether All files are declared in another
.APP.

Note: When using EXTERNAL to declare a FILE shared by multiple
libraries (.LIBs, or .DLLs and .EXE), only one library should
define the FILE without the EXTERNAL attribute. This
ensures that there is only one record buffer allocated for the
FILE and all the libraries and the .EXE will reference the
same memory when referring to data elements from that
FILE.

Declaring Module The filename (without extension) of the
MEMBER module containing the FILE
definition without the EXTERNAL attribute. If
the FILE is defined in a PROGRAM module,
leave this field blank.

All files are declared in another .APP
***?

File Open Mode Specifies how your application opens files.
Open opens files as Read/Write(primary user) +
Deny Write(all other users). Share opens files
as Read/Write(primary user) + Deny None(all
other users). See the Language Reference for
more information.

Choose Other to specify a custom combination
of primary user + other user access. For the
primary User Access , choose from Read Only ,
Write Only , or Read and Write . For Other
Access , choose from Deny None, Deny All,
Deny Read, Deny Write , and Any Access
(FCB compatibility mode).

CHAPTER 5 USING THE APPLICATION GENERATOR

Individual File Overrides

Select the Individual File Overrides tab to specify the above settings
for individual files in the data dictionary. Highlight the file whose
attributes you want to chnage, and press the Properties button.

Use File Setting sets the attribute according to the data
dictionary.

Use Default sets the attribute according to the File Control
Flags tab.

Embed Points in the Global Properties Dialog

Through embed points, the Global Properties dialog provides access to
the application program’s global data section, to the section that opens
all files, and to the section that processes errors encountered when
opening the files.

To access these embed points, press the Embeds button in the Global
Properties dialog. As with any embed point, you can write your own
custom code, call a procedure, or use a code template. The Application
Generator, when generating code, places your code or calls your
procedure at the next source code line following the point you pick from
the Embedded Source dialog.

See the Defining Embedded Source Code section below, for more
information on adding embedded source code to your application.

ADDING A PROCEDURE TO YOUR APPLICATION

A procedure is a collection of instructions—Clarion language
statements—which perform a task. When the program performs the task,
such as printing a report, it is executing the procedure. The first
procedure your application executes is called “Main” by default. You can
name your first procedure anything you want, but when this chapter
refers to the first procedure, we will refer to “Main.” All other procedures
branch from “Main”—one procedure can call another.

The heirarchical tree controls (or outline controls) in the Application
Tree dialog illustrate how the procedures branch from “Main” and from
each other. This provides a schematic diagram of your program’s logical
structure (an “S” on the procedure icon means the procedure contains
embedded source code).

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

The Application Tree shows the procedures you create when you add a
menu item, a toolbar command, or an embedded source procedure. Each
new procedure is marked “To Do.” When you “fill in” its functionality,
the Application Tree replaces the “To Do” with your description.

Defining the Procedure Type

Once the procedure appears on the Application Tree, the first step is to
define its procedure type from the choices available in the Select
Procedure T ype dialog.

❏ To open the Select Procedure Type dialog, select any “ToDo”
procedure in the Application Tree dialog, then press the Properties
button, or choose Edit ➤ Properties . You can also DOUBLE-CLICK on
the procedure.

❏ To define the procedure type for your application’s procedures,
highlight a procedure type from the Select Procedure Type dialog
list, then press the Select button. You can also DOUBLE-CLICK on a
procedure type. If you have selected a Browse procedure, a Form
procedure, or a Report procedure, and you have checked the Use
Procedure Wizard box, a Wizard dialog will appear, guiding you
through each step of the procedure properties definition. If you have
not checked the Use Procedure Wizard box, the Procedure
Properties dialog appears.

CHAPTER 5 USING THE APPLICATION GENERATOR

If you must change the procedure type later, choose Procedure ➤
Change Template Type . The Select Procedure Type dialog appears so
you can select another procedure type. If the new procedure type doesn’t
support some of the structures—such as menus—that you defined in the
previous procedure type, you may “orphan” some other previously
defined procedures. Therefore, be cautious when changing procedure
type.

Defining the Procedure Properties

After you choose the procedure type, you can define the procedure’s
properties—these properties include:

◆ a description of the procedure
◆ the procedure prototype
◆ the module containing the source code
◆ parameters passed to the procedure
◆ return values from functions
◆ INI file settings used by the procedure
◆ files accessed by the procedure
◆ window displayed by the procedure, including its size, shape,

appearance and functionality
◆ report generated by the procedure
◆ data items (fields and variables) used by the procedure
◆ procedures called by the procedure
◆ custom source code embedded within the procedure
◆ formulas used by the procedure
◆ template source code that extends the procedure

You need not define every property for every procedure. In many cases,
the default property definition is appropriate. When a default property is
already established, a green check mark appears beside its command
button. For example, the Browse procedure template contains a
predefined window; therefore, a green check mark appears next to the
Window button for procedures generated with this template.

For the properties you do define, use a Wizard dialog, or the Procedure
Properties dialog and its subordinate dialogs and formatters. The
Wizard dialogs supply defaults for many of the procedure properties,
and then prompt you, step-by-step, for the other information necessary to
complete the procedure. The Procedure Proper ties dialogs allow for a
more flexible definition of procedure properties.

This section will primarily be concerned with the Procedure Properties
dialogs. The properties discussed in this section are common to all
Procedure Properties dialogs. You define these properties by
completing the entry boxes and using the command buttons on the
Procedure Properties dialogs.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

The following chapters discusses additional procedure properties, their
prompts, and the various procedure templates that drive them.

❏ To define your procedure properties:

From the Application Tree, select a procedure and press the Properties
button to access the Procedure Properties dialog. Alternatively,
double-click on the procedure, or right-click and choose Properties from
the popup menu.

Description A short text description for the procedure, which
appears next to the procedure name in the
Application Tree dialog.

Press the ellipsis (...) button to edit a longer (up
to 1000 characters) description.

Prototype Optionally specify a custom procedure prototype
(see the Language Reference for details) which
the Application Generator places in the MAP
section. If you specify nothing, the Application
Generator provides the correct prototype for the
selected procedure template.

Module Name Specifiy which module (.CLW) file contains the
source code for the procedure by selecting from
the drop down list. By default, the Application
Generator names modules by taking the first five
characters of the .APP file name, then adding a
three digit number for each module.

Parameters Allows you to specify parameter names (an
optional list of labels separated by commas) for
your procedure, which you pass to it from a
calling procedure. You must provide the
functionality for the parameters in your source
code.

The Procedure Properties
dialog. Other dialogs may

include additional prompts
for specifying additional

functionality.

CHAPTER 5 USING THE APPLICATION GENERATOR

Return V alue Specify the variables receiving return values
from procedures prototyped as functions
(functions return values, procedures do not).

Save and Restore Window Location
Specify whether this procedure will save and
restore its window location using an .INI file.

Defining Procedure Files

File data (data stored in your application files) are available to any
procedure within the entire application, however, you must tell the
Application Generator which files will be used so it can provide source
code for reading the file.

❏ To specify which files your procedure will use, press the Files button
in the Procedures Properties dialog.

❏ To add a file to the file schematic, select an item in the Files list, and
press the Insert button. Choose a file from the Insert File dialog.

The first file you add for a control is always the “primary” file. All
others are secondary.

❏ To delete an item from the file schematic, highlight it and press the
Delete key.

❏ To specify the sort sequence of a file, select it in the Files list, and
press the Key button. Then choose a key from the Change Access
Key dialog.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Defining Procedure Windows

The Window Formatter allows you to visually design the size, shape,
menus, controls and functionality for the window in this procedure.
Access the Window Formatter by pressing the Window button in the
Procedure Proper ties dialog, or from the Application Tree, select a
procedure, RIGHT-CLICK and choose Window from the popup menu. See
the Using the Window Formatter chapter for details on how to define
your window.

Defining Procedure Reports

The Report Formatter allows you to visually design the size, shape,
content, layout, and functionality for the report in this procedure. Access
the Report Formatter by pressing the Report button in the Procedure
Properties dialog, or from the Application Tree, select a procedure,
RIGHT-CLICK and choose Report from the popup menu. See the Using the
Report Formatter chapter for more information.

Defining Procedure Data

Procedures may access several classes of data. These include GLOBAL
data (see Specifying Global Properties, this chapter), MODULE data,
LOCAL data, and file or field data (see Defining Procedure Files, this
chpater, Using the Window Formatter and Setting Control Properties).

GLOBAL data may be accessed by any procedure in the entire
application. MODULE data may only be accessed by the procedures
contained in the module where the data are defined. LOCAL data may
only be accessed within the single procedure where the data are defined.
See the Language Reference section on Data Declarations and Memory
Allocation for more information.

Defining LOCAL Data and MODULE Data

❏ To define LOCAL data (memory variables local to a single
procedure) to a procedure:

1. Select a procedure in the Application Tree dialog.

2. Press the Properties button, choose Edit ➤ Properties, or RIGHT-
CLICK and choose Properties from the popup menu to display the
Procedure Properties dialog.

3. Press the Data button to display the Local Data dialog.

If any local variables already exist, they appear in the list.

CHAPTER 5 USING THE APPLICATION GENERATOR

4. Press the Insert button and define the variable.

The New Field Properties dialog appears. Type in the variable
name, choose the variable type, and set any additional attributes,
including screen attributes. You can also specify how memory is
allocated for the variable.

The Allocation drop down list on the Attributes tab allows you to
specify that the variable is allocated uninitialized memory (AUTO
attribute). It allows you to specify that the variable is EXTERNAL
(memory is allocated in a .DLL). It allows you to specify that the
variable is STATIC (the value persists from one instance of the
procedure to another). It allows you to add the THREAD attribute,
which provides a thread specific static variable.

This is the same dialog used to set field properties in the data
dictionary. For details, see the Using the Data Dictionary chapter.

5. Close the Field Properties and the Local Data dialogs.

The data variables are now included in the procedure.

❏ To define MODULE data (memory variables local to the procedures
in a single module):

1. From the Application Tree dialog, select the Module tab.

2. Highlight a module (folder) inside the Application Tree dialog.

3. Press the Properties button to display the Module Properties
dialog, or RIGHT-CLICK and choose Data from the popup menu.

4. Press the Data button.

The Module Data dialog appears.

5. Press the Insert button.

The Field Properties dialog appears. This is the same dialog used to
set field properties in the data dictionary. For details, see Using the
Data Dictionary, and the section above this one.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

6. Close the Field Properties , the Module Data , and the Module
Properties dialogs.

Defining Calls to Other Procedures

Procedures may call other procedures. Press the Procedures button to
access the Called Procedures dialog. To add a procedure, press the
Insert button, and type a procedure name in the next dialog. To delete a
called procedure, press the Delete button. Additional buttons allow you
to change the order of the called procedures listed.

Tip: The main purpose of the Procedures button is to add
procedures called from embedded source to the Application
Tree. Procedures called any other way are automatically
added to the tree.

Defining Embedded Source Code

Embedding source code in a procedure allows you to fully customize
your procedure. You can specify or create code to execute before, during,
and after the procedure. You can write your own code, or use code
templates which help write the code for you.

In order to effectively embed code, you should understand the generated
code you are embedding into. Study a browse procedure and a form
procedure (C:\CW15\EXAMPLES\APPS\TREE017.CLW and
TREE019.CLW) to familiarize yourself with the coding conventions
typical of Clarion’s templates.

The Application Generator adds your embedded code to the code it
generates, at precisely the point you specify based on predefined embed
points. For example, any procedure with a window includes points for
embedding code immediately before and immediately after opening the
window. However, you can add your own embed points if needed. See
the Template Language Reference for details on modifying the templates.

Once you embed source code, the procedures containing embedded
source are flagged with an “S” on the procedure’s icon in the Application
Tree.

❏ To embed custom source code in a procedure:

1. In the Application Tree dialog, highlight a procedure and press the
Properties button, OR RIGHT-CLICK and choose Embeds from the
popup menu.

2. Press the Embeds button in the Procedure Properties dialog to
display the Embedded Source dialog.

CHAPTER 5 USING THE APPLICATION GENERATOR

The Embedded Source dialog lists points within the procedure
where your custom source code may be inserted. This includes the
points where the field specific events occur within the procedure. For
example, if you place an entry box in a window, the embed points
you can access include points where the user selects (TABS onto or
mouse CLICKS on) the field, and points where the user completes or
accepts (TABS off, presses the ENTER key, or presses the OK button)
the field.

The following code was generated by a generic window template, to
illustrate standard embed points. Each embed point is marked by a
comment (exclamation points initiate comments) showing the label
of the embed point as it appears in the Embedded Source dialog.
Remember, you can add your own embed points if needed.

ShowEmbeds PROCEDURE

LocalRequest LONG,AUTO
OriginalRequest LONG,AUTO
LocalResponse LONG,AUTO
WindowOpened LONG
WindowInitialized LONG
ForceRefresh LONG,AUTO
CurrentTab STRING(80)
LastName STRING(20)
!!! Data Section, Before Window Declaration
window WINDOW('Caption'),AT(,,260,100),GRAY
 ENTRY(@s20),AT(108,25),USE(LastName)
 BUTTON('Ok'),AT(130,72),USE(?Ok)
 END
!!! Data Section, After Window Declaration
 CODE
 !!! Initialize the Procedure
 LocalRequest = GlobalRequest
 OriginalRequest = GlobalRequest
 LocalResponse = RequestCancelled
 ForceRefresh = False
 CLEAR(GlobalRequest)
 CLEAR(GlobalResponse)
 !!! Procedure Setup
 !!! Beginning of Procedure, Before Opening Files
 !!! Beginning of Procedure, After Opening Files
 !!! Before Opening the Window

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

 OPEN(window)
 WindowOpened=True
 !!! After Opening the Window
 !!! Preparing Window Alerts
 !!! Preparing to Process the Window
 ACCEPT
 !!! Accept Loop, Before CASE EVENT() handling
 CASE EVENT()
 !!! CASE EVENT() structure, before generated code
 OF EVENT:AlertKey
 !!! Window Event Handling (AlertKey)
 OF EVENT:PreAlertKey
 !!! Window Event Handling (PreAlertKey)
 OF EVENT:CloseWindow
 !!! Window Event Handling (CloseWindow)
 OF EVENT:CloseDown
 !!! Window Event Handling (CloseDown)
 OF EVENT:OpenWindow
 !!! Window Event Handling (OpenWindow)
 IF NOT WindowInitialized
 DO RefreshWindow
 WindowInitialized = True
 END
 SELECT(?LastName)
 OF EVENT:LoseFocus
 !!! Window Event Handling (LoseFocus)
 OF EVENT:GainFocus
 !!! Window Event Handling (GainFocus)
 ForceRefresh = True
 WindowInitialized = True
 DO RefreshWindow
 OF EVENT:Suspend
 !!! Window Event Handling (Suspend)
 OF EVENT:Resume
 !!! Window Event Handling (Resume)
 ELSE
 !!! Other Window Event Handling
 !!! CASE EVENT() structure, after generated code
 END
 !!! Accept Loop, After CASE FIELD() handling
 !!! Accept Loop, Before CASE FIELD() handling
 CASE FIELD()
 !!! CASE FIELD() structure, before generated code
 OF ?LastName
 !!! Control Handling, before event handling (?LastName)
 CASE EVENT()
 OF EVENT:Accepted
 !!! Control Event Handling, before generated code (?LastNAme, Accepted)
 !!! Control Event Handling, after generated code (?LastName, Accepted)
 OF EVENT:Rejected
 !!! Control Event Handling, before generated code (?LastName, Rejected)
 !!! Control Event Handling, after generated code (?LastName, Rejected)
 OF EVENT:Selected
 !!! Control Event Handling, before generated code (?Lastname, Selected)
 !!! Control Event Handling, after generated code (?OLastName, Selected)
 ELSE
 !!! Other Contorl Event Handling (?LastName)

CHAPTER 5 USING THE APPLICATION GENERATOR

 END
 !!! Control Handling, after event handling (?LastName)
 OF ?Ok
 !!! Control Handling, before event handling (?Ok)
 CASE EVENT()
 OF EVENT:Accepted
 !!! Control Event Handling, before generated code (?Ok, Accepted)
 DO SyncWindow
 !!! Control Event Handling, after generated code (?Ok, Accepted)
 OF EVENT:Selected
 !!! Control Event Handling, before generated code (?Ok, Selected)
 !!! Control Event Handling, after generated code (?Ok, Selected)
 ELSE
 !!! Other Control Event Handling (?Ok)
 END
 !!! Control Handling, after event handling (?Ok)
 !!! CASE FIELD() structure, after generated code
 END
 !!! Accept Loop, After CASE FIELD() handling
 END
 DO ProcedureReturn
!---
ProcedureReturn ROUTINE
 !!! End of Procedure, Before Closing Files
 !!! End of Procedure, After Closing Files
 !!! Before Closing the Window
 IF WindowOpened
 CLOSE(window)
 END
 !!! After Closing the Window
 !!! End of Procedure
 IF LocalResponse
 GlobalResponse = LocalResponse
 ELSE
 GlobalResponse = RequestCancelled
 END
 RETURN
!---
InitializeWindow ROUTINE
 !!! Window Initialization Code
 DO RefreshWindow
!---
RefreshWindow ROUTINE
 IF window{Prop:AcceptAll} THEN EXIT.
 !!! Refresh Window routine, before lookups
 !!! Lookup Related Records
 !!! Refresh Window routine, after lookup
 !!! Refresh Window routine, before DISPLAY()
 DISPLAY()
 ForceRefresh = False
!---
SyncWindow ROUTINE
 !!! Sync Record routine, before lookups
 !!! Lookup Related Records
 !!! Sync Record routine, after lookups
!---
!!! Procedure Routines

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

 3. Select a point at which to embed the code and press the Insert
button.

The Select Embed Type dialog appears. There are three ways to
create the embedded source code: hand-coding with the text editor,
calling another procedure, or embedding a template. You can even
combine all three methods.

❏ To “hand-code” the embedded source code with the Text Editor:

1. Select the SOURCE item in the Select Embed Type dialog.

2. Press the Select button to start the Text Editor with a blank source
code window.

3. Write your custom code in the source code window.

Tip: Don’t forget to use the on-line help for explanations and
examples of Clarion Language syntax and techniques. Copy
and paste directly from the help examples!

4. Choose Exit! .

5. Choose Yes when prompted to save the embedded source.

6. Press the Close button to close the Embedded Source dialog.

❏ To call another procedure:

1. Select the Call a Procedure item in the Select Embed Type dialog.

2. Type a name for the procedure or choose an existing procedure from
the drop down list which appears in the next dialog. The caption of
the dialog box corresponds to the embed point chosen.

Typing a new name specifies that the application calls another
procedure, which automatically appears in the Application Tree as a
“To Do.” If another procedure with the same name already exists, the
Application Generator assumes you meant to call it, and does not
add a new “To Do.”

You define the functionality of the other procedure separately. See
Defining Procedure Properties above.

CHAPTER 5 USING THE APPLICATION GENERATOR

3. Press the OK button to close the dialog.

❏ To use a code template to help construct the code:

Code templates help you construct source code with minimal effort
on your part. They can automatically take care of complex control
structures and property assignments. When you select a code
template to embed, Clarion displays a dialog box containing an
explanation of what the template does as well as prompts for the
information required to complete the source code.

The names of the available code templates appear in the Select
Embed Type dialog under the Class Clarion item. For example, the
Initiate Thread template makes starting a new execution thread (for
creating and opening an MDI window from the Application frame)
simple.

See the Using Control, Code, and Extension Templates chapter for
descriptions of the templates included with Class Clarion.

1. Select a code template and press the Select button.

This displays a Prompts for ... dialog box (the title includes the
name of the code template).

2. Read the instructions and explanations in the dialog.

Each code template includes explanatory text on its proper use and
how to fill in the necessary options.

3. Fill in or choose from the options inside the Prompts for ... dialog.

4. Press the OK button to close the dialog.

❏ To use any combination of hand-coding, calling another procedure,
or embedding a template:

1. Follow one set of instructions above for creating the first embedded
source code item.

The Select Embed Type
dialog allows you to call a
procedure, add your own

custom code, or use a
code template to help you

write your own code.

Filling in the Initiate
Thread code template.

Here it STARTs a
procedure called

WashTheDog.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

After closing the Select Embed T ype dialog, your embed point
appears in the list. If you added source, an item called “Source”
appears, followed by the first line of code, to help you identify it
when you look at the list. If you added a procedure, an item called
“PROCEDURE,” followed by the procedure name appears. If you
added a code template, the name of the code template appears.

2. Select the item you inserted in the Embedded Source dialog.

3. Press the Insert button.

4. Add another Procedure, Source, or Code Template, according to the
directions in the previous sections.

The Embedded Source dialog also contains ↑↑↑↑↑ and ↓↓↓↓↓ buttons to
change the order of the multiple embedded source items; execution
occurs in the order they are listed. There are also Delete and
Properties buttons for maintenance.

5. Press the Close button to close the Embedded Source dialog.

❏ To Cut and Paste (or Copy and Paste) embedded source from one
embed point to another:

1. In the Embedded Source dialog, highlight a line in the tree
diagram.

Highlighting an embed point line (folder icon) selects all the
embedded source at this embed point for subsequent cut and paste
operations. Highlighting a single embed source item selects only that
item.

2. Press the Cut or Copy button.

3. Again, highlight a line in the tree diagram.

4. Press the Paste button.

Use the cut, copy, and
paste buttons to

transfer one or more
embedded items from

one embed point to
another.

CHAPTER 5 USING THE APPLICATION GENERATOR

Defining Procedure Formulas

You can access the Formula Editor by pressing the Form ula button in
the Procedure Proper ties dialog. This allows you to create expressions,
and store the results in a memory variable or a field within a file. You can
then display the result in a window or report control.

The Formula Editor can create simple assignment statements and
complex conditional structures. See the Using the Formula Editor
chapter for details on how to create the actual expression.

❏ When using the Formula Editor with the Application Generator:

1. Press the Formulas button in the Procedure Properties dialog to
open the Formula Editor dialog.

2. Type a name for the expression in the Name box.

3. Choose a class for the expression by pressing the ellipsis (...) button.

The class determines where the formula will be inserted into the
procedure: such as at procedure setup, before lookups, after lookups,
at procedure exit, or at prime fields. These formula classes should
not be confused with template classes.

4. Type the name of a field or variable in the Result box, or press the
ellipsis (...) button next to it to choose one from the Select Field
dialog.

5. Fill in the other options in the Formula Generator dialog, according
to the instructions in the Using the Formula Generator chapter.

6. Close the Formula Editor.

❏ Usually, you’ll display the result of the expression in a string control
in a window or report. To display it in a window:

1. Press the Window button to open the Window Formatter .

If there is not yet a window defined for the procedure, you can define
one.

Creating a Formula.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

2. Select the string control tool from the Controls toolbox (or choose
Control ➤ String), and CLICK in the window to place the control.

3. With the new string control selected, choose Edit ➤ Properties (or
RIGHT-CLICK on the string and choose Properties from the popup
menu).

4. Check the Variable String check box in the String Properties
dialog.

 The Select Field dialog appears.

5. Highlight the variable you want to display and press the Select
button.

The String Properties dialog returns, note however, that the
Parameter field has now been replaced by the Picture field.

6. Type a valid display picture in the Picture field.

7. Press the OK button to close the String Properties dialog.

8. Choose Exit! to close the Window Formatter and return to the
Procedure Properties dialog.

Defining Procedure Extensions

Extension and control templates provide additional functionality to basic
procedure templates. Control templates give your procedure the ability
to display and manage specific controls. For example a browse box may
be added using a control template.

Extension templates give your procedure additional functionality not
associated with specific controls. For example, date and time displays
may be added using an extension template. The Using Control, Code
and Extension Templates chapter provides additional information on
using these templates.

From the Procedure Properties dialog press the Extensions button to
display the Extension and Control Templates dialog. Or, from the
Application Tree, select a procedure, right-click, and choose Extensions
from the popup menu. This dialog displays a list of control and
extension templates and the prompts associated with each template.
Highlighting or selecting a template on the left side of the dialog causes
the prompts associated with the selected template to be displayed on the
right side of the dialog.

Add additional extension templates by pressing the Insert button.
Customize existing templates by filling in the prompts on the right side
of the dialog.

CHAPTER 5 USING THE APPLICATION GENERATOR

Tip: Only Extension templates may be added and deleted using
the Extensions button. Control templates may not be added
or deleted, but may be modified. Control templates may be
added or deleted from the Window Formatter by adding or
deleting their associated controls.

MAINTAINING THE APPLICATION TREE

When the Application Tree dialog is active, Clarion provides menus for
maintaining the tree, and tabs for providing different views of the tree.
The menus used for maintaining the tree are the Edit menu, the
Application menu, and the Procedure menu.

Using the Edit Menu

With the Application Tree dialog active, you can execute the following
commands from the Edit menu:

Properties Calls the currently selected procedure’s
Procedure Proper ties dialog. Equivalent to the
Properties button.

Find Allows you to search for a procedure by name.
This can be very useful in a large application
with dozens of procedures. Type a string to
search for in the Search for Procedure dialog.

Find Next Allows you to search for another procedure,
using the same search string as the previous
search. If you did not search previously, the
Search for Procedure dialog appears.

Edit by Name Allows you to type the name of a procedure in
the Edit Procedure by Name dialog, then
opens the Procedure Properties dialog of the
procedure you typed in. This can be very useful
in a large application with many procedures.

Delete Deletes the currently selected procedure code,
properties, etc. The procedure remains as a
ToDo item in the Application Tree because the
procedure is still called by another procedure. To
remove the procedure from the Application Tree,
you must remove all references to the procedure.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Using the Application Menu

With the Application Tree dialog active, you can execute the following
commands from the Application menu:

Properties
Displays the Application Properties dialog for
specifying changes to the .APP file.

Global Properties Displays the Global Properties dialog.
Equivalent to using the Global button in the
Application Tree dialog.

Change Dictionary Allows you to name a new data dictionary for
the application. Type a file name in the Select
New Dictionary dialog, or press the ellipsis (...)
button to choose a new dictionary file from the
Open File dialog.

If your procedures already reference fields in
one dictionary, the Application Generator can
only match fields from the new dictionary if
both the FILE structure prefix and the RECORD
fields are exactly the same. The Select New
Dictionary dialog provides a warning message.

Insert Module Specifies a new MODULE for generated source
code. You can also specify an external .LIB or
.OBJ file to add to the project.

Template Utility Allows you to run any utility templates that are
registered You may write your own utilities or
acquire utilities from third party vendors. Use
this command to start any of Clarion’s Wizards.

Redistribute Procedures
Redistributes the procedures among the modules
in the order in which they already occur. The
number of procedures contained in each module
is determined by the Procedures Per Module
you specify. This utility immediately affects the
Application Tree, however, actual source
module files will not be affected until the next
time source is generated.

CHAPTER 5 USING THE APPLICATION GENERATOR

Repopulate Modules
Redistributes the procedures among the modules
trying to keep procedures that call each other in
the same module. The number of procedures
contained in each module is determined by the
Procedures Per Module you specify. This
utility immediately affects the Application Tree,
however, actual source module files will not be
affected until the next time source is generated

Renumber Modules
Renumbers modules. This is useful when empty
modules have been deleted. Please note this
menu option immediately affects the
Application Tree, however, actual source
module files will not be affected until the next
time source is generated.

Delete Empty Modules
Removes modules from the Application Tree
that have become empty as a result of
application changes or deletions. This menu
option immediately affects the Application Tree,
however, module files (.CLW) on your disk drive
are not deleted.

Delete Empty Libraries
Removes libraries from the Application Tree
that have become empty as a result of
application changes or deletions. This menu
option immediately affects the Application Tree,
however, library files on your disk drive are not
deleted.

Using the Procedure Menu

With the Application Tree dialog active, you can execute the following
commands from the Procedure menu:

New Adds a new procedure not connected to the
procedure tree. The INSERT keydoes the same
thing,

Rename Allows you to change the name of the currently
selected procedure. Type a new name in the
Rename dialog box.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Copy Allows you to copy the currently selected
procedure. Type a new name in the New
Procedure dialog box.

Change Module Allows you to move the currently selected
procedure from one source module to another.
Select the destination in the Select Destination
Module dialog.

Your application may execute slightly faster if
you group procedures which commonly execute
together in the same module.

Change Template Allows you to change the procedure type for the
currently selected procedure. Select a new
procedure template in the Select Procedure
Type dialog. If the new procedure type doesn’t
support some of the structures—such as
menus—that you defined in the previous
procedure type, you may “orphan” some other
previously defined procedures. Therefore, be
cautious when changing procedure type.

Using the View Tabs

The Application Tree dialog allows you to view your procedures in four
different arrangements. Change the arrangement by selecting the desired
tab.

Procedure Displays procedures in heirarchical order,
nesting each procedure under its calling
procedure. This is the default view, and
combined with the “To Do” legends for
undefined procedures, is the best view for
determining what remains to be done to
complete the application.

Module Each procedure appears nested under the name
of the module file to which its source code
generates.

Template Lists procedures according to procedure type.

Name Lists procedures alphabetically by name. This is
sometimes convenient for large projects.

CHAPTER 5 USING THE APPLICATION GENERATOR

SETTING APPLICATION OPTIONS

The Application Options dialog allows you to specify default settings
for each new application you create as well as for the currently active
application. To access the dialog, choose Setup ➤ Application
Options . The dialog is divided into three sections or tabs: Application
Options , Registry Options , and General Options .

Application

Require a dictionary Specifies that each new application must
have a data dictionary.

Default dictionary Specifies a default data dictionary file name that
appears in the Application Properties dialog
whenever a new application is being created.
You may change to another dictionary before
closing the dialog, however, a single data
dictionary may be used to support multiple
applications.

Multi user development
Tells the Dictionary Editor and the Application
Generator to open the Data Dictionary and
REGISTRY.TRF in read only mode, so many
developers can work with the same dictionary.
See the Multi-Programmer Development
appendix for more information.

Display Repeated Functions
Specifies whether the Application Generator re-
displays procedures called from more than one
place within the Application Tree, or simply
refers to them as “Expanded Above”.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Procedures per Module
The Procedures per Module spin control
specifies the number of procedures that the
Application Generator writes to each source
code module. This can affect compile time when
the Conditional Generation switch is turned on.
Specifying one procedure per module, for
example, means that each successive compile
rebuilds only those procedures changed since the
last compile. The down side to this is that it
requires more disk space. Generally, a smaller
number is faster.

Populate Main Module
Specifies that the Application Generator writes
procedures to the main source code module.
When this option is off, the main module
contains only the program global data and code.
All other procedures reside in other files.

Import name clash action
Specifies how the Application Generator handles
procedure names from an imported application
file which clash with procedure names already
resident. The drop down list choices are self-
explanatory.

Disable Field Prompts
Specifies that template-generated field-specific
prompts will not display on Action tabs. This
does not disable prompts created by Control
Templates.

Application Wizard
Sets the default value of the Application
Wizard check box on the Application
Properties dialog when creating a new
application. The Application Wizard will build
an entire application based on your data
dictionary.

Procedure Wizard Sets the default value of the Procedure Wizard
check box on the Select Procedure Type dialog
when creating a new procedure. Checking this
box will invoke a Wizard to help you define
your Browse, Form, or Report procedure.

CHAPTER 5 USING THE APPLICATION GENERATOR

Registry

See Setting Template Registry Options below.

Generation

Conditional Generation
Specifies that only source code modules
changed since the last make should be compiled.

Debug Generation Specifies a text file for the Application
Generator to log events to, and turns logging on
and off. In case of a fatal error by the
Application Generator, this log provides a trace
for TopSpeed Technical Support to identify
where the problem occurred.

Generation Message
Specifies what and how many messages will be
displayed for your information during source
code generation.

MAINTAINING YOUR TEMPLATES

Template files (*.TPL) drive the Application Generator. Each procedure
template contains generic or “model” code, as well as prompts for
additional information neede to complete the procedure. The templates
are interactive—they process the information you specify when you
design the application. Clarion evaluates the template file twice:

◆ Before creating your application, Clarion preprocesses the template
class and stores the information in the REGISTRY.TRF file.
Preprocessing occurs only when the Application Generator detects a
new or changed template.

When it preprocesses the template set, the Application Generator
stores a list of all the information you must provide to each
procedure. It also determines the points where you can embed your
own Clarion source code to customize a procedure.

◆ At code generation time, the Application Generator uses the
information you provided in the Procedure Proper ties dialogs,
information from the Data Dictionary, the .APP file, and the
template language statements and symbols in the REGISTRY.TRF
file to generate your source code.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Each template class can contain multiple templates which you use to
create the procedures in your application. Before you can use a template
it must be in the Template Registry.

Setting Template Registry Options

To set registry options, choose Setup ➤ Application Options . The
Generator Options dialog appears. Select the Registry tab.

Template language code can be stored among many files, typically .TPW
and .TPL files. Clarion uses these files to produce one logical template
class (REGISTRY.TRF). Think of the .TPW and .TPL files as the source
or backup of your templates, and the REGISTRY.TRF file as your
working copy.

The Registry tab allows you to specify how the template language files
and the one logical template class are managed for your applications.
These options are mainly for programmers who produce their own
template files or make modifications to the default templates.

❏ To automatically re-register your templates when the Application
Generator detects a change, that is, when a .TPL or .TPW file
changes, if you want the change copied, or registered, to the
REGISTRY.TRF file, check the Re-register when changed box.

❏ To automatically update the template files when making a change in
the Template Registry , that is, if you want changes in the
REGISTRY.TRF file to be reflected in the .TPL and .TPW files,
check the Update Template Chain when edited box.

❏ To specify the Application Generator should re-generate the .TPL
and .TPW files from REGISTRY.TRF, should the files be deleted,
check the Regenerate Deleted Templates box.

CHAPTER 5 USING THE APPLICATION GENERATOR

Opening the Registry

The Template Registry stores a list of all the templates (and their
procedures) available to you when building an application. To create an
application, you must have at least one template class registered.

Though the default template Class Clarion (CW.TPL) is pre-registered, if
you need to re-register it, or if you wish to register a third party template
class, this is how to do it:

1. Choose Setup ➤ Template Registry .

The Template Registry dialog appears. This provides a heirarchical
list of your templates and their procedures, plus a group of command
buttons to maintain the registry.

2. Press the Register button.

The Template File dialog appears. This dialog lets you choose
which templates will be registered. The List Files of Type
specification is *.TPL. The default template subdirectory or folder is
C:\CW15\TEMPLATE.

3. Select the CW.TPL file (or third party .TPL file) and press the OK
button.

This registers (preprocesses) the template set (class), making it
available for use.

Registry Maintenance

The Template Registry dialog also provides other command buttons for
other file maintenance options for the registry:

Unregister This button deletes the currently highlighted
template class from REGISTRY.TRF.

The Template Registry.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Enable This button enables the currently highlighted
template class or procedure (if you had
previously disabled it).

Disable This button disables the currently highlighted
template class or procedure, which makes it
unavailable to your application.

Regenerate This button regenerates the .TPL file from the
REGISTRY.TRF file for the currently
highlighted template class.

The Template Registry not only allows you to
add templates and procedures to choose from, it
also allows you customize your templates. See
Properties immediately below, for instructions
on how to customize your template set.

When you change the properties for your
template, the changes are stored in your
REGISTRY.TRF file, effectively establishing
new default values for your application. The
Regenerate button reads the REGISTRY.TRF
file, then rewrites the .TPL file which contained
the original template language code. This allows
you to customize a template, then give a copy of
the changed .TPL file to another programmer to
register!

Properties This button accesses the Template Procedure
Properties dialog. Press the Global Data
button to edit default global data contained in
this template. Press the Defaults button to edit
default structures (windows, list boxes, etc.)
contained in this template.

View Definition This button displays the Template code (the
.TPL) in a text window. You may not edit the
code in this window.

If the currently highlighted item in the Template
Registry tree is a module, the text window opens
to the first line of template language code for the
#MODULE. If the currently highlighted item in
the Template Registry tree is a procedure, it
opens to the first line of template language code
for the #PROCEDURE. See the Template
Language Reference for more information on
template language format and syntax.

CHAPTER 5 USING THE APPLICATION GENERATOR

APPLICATION IMPORT/EXPORT COMMANDS

When the Application Generator is active, the File menu contains
commands for incorporating procedures from other applications. The
export process is managed through the use of an export file format
(.TXA) designed to help incorporate procedures written with other
versions of Clarion. The import process can directly process the .APP
file format in which the Application Generator stores the application in
progress.

The following commands appear on the File menu:

Import from Application
Allows you to select an .APP file from the
Select Application to Import From dialog.
After you make the selection and press the OK
button, the Application Generator adds all the
procedures from the selected .APP file to the
Application Tree.

Warning: Be sure to back up both source and target
before importing. Before importing procedures or files from
earlier versions of CW .APP or .DCT files, CW 1.5 converts the
earlier versions to CW 1.5 format. Once co nverted to CW 1.5
format, the source files will no longer be usable by earlier
versions of CW.

Import Text Incorporates the procedures defined in a .TXA
file (an ASCII version of an .APP or application
file), created with the Export Text (see below)
command. You will be prompted to rename or
replace procedures with name conflicts.

Export Text Allows you to create a .TXA file (an ASCII
version of your .APP file) from the current
application.

Selective Export Allows you to create a .TXA file containing
only the selected procedure.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

UUUUUSINGSINGSINGSINGSING THETHETHETHETHE P P P P PROCEDUREROCEDUREROCEDUREROCEDUREROCEDURE T T T T TEMPLEMPLEMPLEMPLEMPLAAAAATESTESTESTESTES

66

The Browse T emplate
provides a predefined
window with a scrolling
list and update buttons
to call a Form (update)
procedure.

The Report Template
allows you to create a
report using the Report
Formatter, and plug it
into y our procedure
tree.

The Frame Template
provides an application
frame for your Multiple
Document Interface
applications.

The Quick Start Wizard
is one of the tools that
makes Rapid
Application
Development truly
Rapid.

In this chapter, you’ll find guides to
the Procedure Wizards and the
Procedure Templates.

CHAPTER 6 USING THE PROCEDURE TEMPLATES

WIZARDS

Clarion for Windows provides WIZARDS—powerful utility templates
that enable you to create a Browse, Form, or Report procedure by merely
answering a few quick questions. You can even use a wizard to create an
entire Application from an existing dictionary!

Options you specify in advance in the Data Dictionary provide additional
control over the procedures the wizards create. See Using Wizard
Options for more information.

Quick Start Wizard

Using the Quick Start Wizard, you can create a data dictionary and a working
application with no coding required.

Simply define a data file, and the Quick Start Wizard creates a complete
Windows application. The entire process takes less than five minutes; if
you're a fast typist! Your application has a form procedure for updating the
file, a multi-keyed browse procedure, and as many reports as the data file
has keys.

Just define the fields for a single file. For each field, you provide a name,
display format picture, and key information. This creates a data dictionary.
The Quick Start Wizard creates the application based on this dictionary.
Once you've specified all options, the OK button generates the .APP file,
and loads the procedures into the Application Tree dialog.

To use the Quick Start Wizard:

1. Optionally, in File Manager, choose File ➤ Create Directory or in
Windows 95 Explorer, choose File ➤ New ➤ Folder, type a name
and press OK .

2. In Clarion for Windows, choose File ➤ New.

The New file dialog appears.

3. Select the Application tab.

4. Type a name for the .APP file in the Application File field.

Type a legal DOS file name. Clarion automatically adds the .APP
extension.

5. Check the Use Quick Start Wizard box below the file list, then
press the Create button.

The Quick Start Wizard dialog appears. This dialog allows you to
define the file for the application.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Application Name The DOS file name for the .APP file. The Quick
Start Wizard will use the same file name (with
the .DCT extension) for the data dictionary file.

Optionally press the ellipsis button (...) to
change the directory, and type a file name in the
Open File dialog box. The working directory, in
which all source code files will be generated,
depends on where the .APP file resides.

Data File Name Type a legal DOS file name (no extension
necessary) for the data file.

Prefix This box automatically fills in with the first
three letters of the name of the data file when
you TAB from the Data File Name box.
Optionally specify up to 14 letters of your
choice in this field.

The prefix allows your application to distinguish
between similar variable names occurring in
different file structures. A field called Invoice
may exist in one data file called Orders and
another called Sales. By establishing a unique
prefix for Orders (ORD) and Sales (SAL), the
application may distinguish the two fields as
ORD:Invoice and SAL:Invoice.

File Driver Specify the data file type. When using the
Application Generator, Clarion for Windows
automatically links in the correct database file
driver library. See the Database Drivers
appendix for a discussion of the relative
advantages of each driver.

CHAPTER 6 USING THE PROCEDURE TEMPLATES

Remember that individual file drivers may vary
in their support of some of the attributes which
you add to the FILE structure in this dialog box.

Field Name To name each field, type a valid Clarion label in
the Name field. Valid field names may vary
slightly according to the file driver.

Picture Specify a default picture token by typing it in
the Picture field. The picture token, together
with the selected File Driver, determine the data
type which the Quick Start Wizard uses for the
field. When the Application Generator creates
window and report controls for the field, this
also serves as the default picture for the control.

Key This specifies whether to create a key using this
field as a component, and if so, the type of key.
By specifying Unique, your application will
ensure that each record has a distinct value.
Duplicate specifies a key that allows more than
one record with the same value in the key
component.

The Quick Start Wizard creates a multi-keyed
browse procedure and reports for every key you
specify.

The Quick Start Wizard allows you to name each field, one by one, by
pressing the DOWN-ARROW to add a new item to the list.

Press the DOWN-ARROW, or TAB, to define the next field.

Insert This button allows you to insert a new, blank
field, above the currently selected field.

Delete This button allows you to delete the currently
selected field.

Move Up This button allows you to move the currently
selected field up one position in the fields list.

Move Down This button allows you to move the currently
selected field down one position in the fields
list.

5. When you have defined all the desired fields, press the OK button.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

The Quick Start Wizard creates your application and displays the
Application Tree.

Application Wizard

This wizard creates a complete application from an existing dictionary. It
creates a Frame containing a menu with options calling all procedures it
creates. It also creates Browse and Report procedures each specified file,
with associated Form (Update) procedures.

To use the Application Wizard:

1. Optionally, in File Manager, choose File ➤ Create Directory or in
Windows 95 Explorer, choose File ➤ New ➤ Folder, type a name
and press OK .

2. In Clarion for Windows, choose File ➤ New.

The New file dialog appears.

3. Select the Application tab.

4. Type a name for the .APP file in the Application File field. Don’t
use the Quick Start Wizard , uncheck the box below the file list (see
Using the Quick Start Wizard).

Type a legal DOS file name. Clarion automatically adds the .APP
extension.

The Application Properties dialog appears. This dialog allows you
to define the essential files for the application.

5. Name the .DCT file the application will use in the Dictionary File
field, or press the ellipsis (...) button to select the file in the Select
Dictionary dialog.

6. Optionally, rename the First procedure or accept the default—Main.

The Application Wizard will use the name you provide to create the
starting procedure.

7. Choose the Destination Type from the drop down list.

This defines the type of target file for your application. Choose from
Executable (.EXE), Library (.LIB), or Dynamic Link Library (.DLL).

8. Optionally, type a name for the application's .HLP file in the Help
File field, or use the ellipsis (...) button to select the file in the Open
File dialog.

The Application Generator does not require that the .HLP file exist
at this point. You can leave the field blank for now, then fill in the
field later.

CHAPTER 6 USING THE PROCEDURE TEMPLATES

The Application Generator allows you to name the help topics in
your application without determining that the help file exists. You
are responsible for creating a .HLP file that contains the context
strings and keywords that you optionally enter as HLP attributes for
the various controls and dialogs.

9. Accept the default Clarion template in the Application Template
field.

The selected application template controls code generation.

10. Check the Use Application Wizard box to use the wizard to create a
complete application based on the selected dictionary and a few
answers you specify.

11. Press the OK button.

The Application Wizard dialogs appear.

12. Answer the question(s) in each dialog, then press the Next button.
On the last dialog, the Finish button is enabled. If you are satisfied
with your answers, press the Finish button.

The Application Wizard creates the .APP file based on the dictionary
and the answers you provided, then displays the Application Tree
dialog for your new application.

You can control some of the wizard options in the Data Dictionary
by specifying Options for Files, Fields, Keys, or relations (see Using
Wizard Options).

Browse Procedure Wizard

This wizard creates a multi-keyed Browse Procedure from an existing
dictionary file definition. The Browse Box is sorted by each key you
specify. The sort order is controlled by TABs. It also creates associated
Form (Update) procedures, if you specify that updates are allowed.

To use the Browse Procedure Wizard:

1. Highlight a ToDo Procedure in the Procedure Tree and press ENTER.

The Select Procedure dialog appears.

2. Select Browse from the list of Procedure templates.

3. Check the Use Procedure Wizard box to use the wizard to create
the procedure based on the selected dictionary file and a few answers
you specify.

4. Press the Select button.

The Browse Procedure Wizard dialogs appear.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

5. Answer the question(s) in each dialog, then press the Next button.
On the last dialog, the Finish button is enabled. If you are satisfied
with your answers, press the Finish button.

The Browse Procedure Wizard creates the procedure(s) based on the
dictionary file and the answers you provided, then displays the
Procedure Properties dialog for your new procedure.

You can control some of the wizard options in the Data Dictionary by
specifying Options for Files, Fields, Keys, or relations (see Using Wizard
Options).

Form Wizard

This wizard creates an update Form Procedure from an existing
dictionary file definition.

To use the Form Procedure Wizard:

1. Highlight a ToDo Procedure in the Procedure Tree and press ENTER.

The Select Procedure dialog appears.

2. Select Form from the list of Procedure templates.

3. Check the Use Procedure Wizard box to use the wizard to create
the procedure based on the selected dictionary file and a few answers
you specify.

4. Press the Select button.

The Form Procedure Wizard dialogs appear.

5. Answer the question(s) in each dialog, then press the Next button.
On the last dialog, the Finish button is enabled. If you are satisfied
with your answers, press the Finish button.

The Form Procedure Wizard creates the procedure based on the
dictionary file and the answers you provided, then displays the
Procedure Properties dialog for your new procedure.

You can control some of the wizard options in the Data Dictionary by
specifying Options for Files, Fields, Keys, or relations (see Using Wizard
Options).

Report Wizard

This wizard creates a Report Procedure from an existing dictionary file
definition.

CHAPTER 6 USING THE PROCEDURE TEMPLATES

To use the Report Procedure Wizard:

1. Highlight a ToDo Procedure in the Procedure Tree and press ENTER.

The Select Procedure dialog appears.

2. Select Report from the list of Procedure templates.

3. Check the Use Procedure Wizard box to use the wizard to create
the procedure based on the selected dictionary file and a few answers
you specify.

4. Press the Select button.

The Report Procedure Wizard dialogs appear.

5. Answer the question(s) in each dialog, then press the Next button.
On the last dialog, the Finish button is enabled. If you are satisfied
with your answers, press the Finish button.

The Report Procedure Wizard creates the procedure based on the
dictionary file and the answers you provided, then displays the
Procedure Properties dialog for your new procedure.

You can control some of the wizard options in the Data Dictionary by
specifying Options for Files, Fields, Keys, or relations (see Using Wizard
Options).

Using Wizard Options

Wizard Options in the Data Dictionary Editor provide further control of
the wizard's functionality. Wizards use the Options specified for a file,
field, key, or alias when creating procedures.

File Options

Do Not Auto-Populate This File
Directs the wizards to skip this file when
creating primary Browse procedures or Report
procedures.

User Options User Options are provided to enable you to
provide information to be used by a third-party
template set. User Options are comma
delimited, that is, each entry is separated by a
comma.

Follow the instructions provided with your add-
on template set.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Alias Options

Do Not Auto-Populate This Aliased File
Directs the wizards to skip the Aliased File
when creating primary Browse procedures or
Report procedures.

User Options User Options are provided to enable you to
provide information to be used by a third-party
template set. User Options are comma
delimited, that is, each entry is separated by a
comma.

Follow the instructions provided with your add-
on template set.

Field Options

Do Not Auto-Populate This Field
Directs the wizards to skip this field when
creating Form, Browse or Report procedures.

Population Order Specifies the order in which the wizards
populate fields. Choose Normal, First, or Last
from the drop down list. Wizards populate in
this order: all Fields specified as First, then all
Fields specified as Normal, and finally all Fields
specified as Last.

Form Tab Specifies the TAB onto which the wizards
populate the field. Type the Caption for the TAB
or select one you have previously created from
the drop down list. This allows you to direct the
wizard to group fields in the manner you want.

Add Extra Vertical Space Before Field Controls on Forms
Check this box to direct the wizards to add
vertical space between this field's control and
the one populated above it.

User Options User Options are provided to enable you to
provide information to be used by a third-party
template set. User Options are comma
delimited, that is, each entry is separated by a
comma.

Follow the instructions provided with your add-
on template set.

CHAPTER 6 USING THE PROCEDURE TEMPLATES

Key Options

Do Not Auto-Populate This Key
Directs the wizards to skip this Key when
creating primary Browse procedures or Report
procedures.

Population Order Specifies the order in which the wizards
populate keys. Choose Normal, First, or Last
from the drop down list. Wizards populate in
this order: all Keys specified as First, then all
Keys specified as Normal, and finally all Keys
specified as Last.

User Options User Options are provided to enable you to
provide information to be used by a third-party
template set. User Options are comma
delimited, that is, each entry is separated by a
comma.

Follow the instructions provided with your add-
on template set.

Relation Options

User Options User Options are provided to enable you to
provide information to be used by a third-party
template set. User Options are comma
delimited, that is, each entry is separated by a
comma.

Follow the instructions provided with your add-
on template set.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

PROCEDURE TEMPLATES

The Clarion Template Language provides support for a component-
oriented approach to development. When you create a procedure, you
start with a Procedure template. This generates the source code for the
procedure initialization, execution, and close down.

The Procedure template may already contain Control templates. Control
templates contain the control and the executable code for maintaining it.
For example, the Browse Procedure template is actually a generic
Window Procedure template which contains the BrowseBox and
BrowseUpdateButtons Control templates.

To duplicate the Browse Procedure template, you could start with a
generic Window Procedure template. Then you could add a BrowseBox
Control template, which you place inside the window just as you would
a control—but this control contains the executable code necessary for
supporting the browse list. Because you place it as if it were an ordinary
control, you can place multiple browse lists in the same window. You
could also add the BrowseUpdateButtons Control template (which
contains the Insert, Change and Delete buttons). You don’t have to add
the Control templates one by one, the Browse Procedure template groups
them all together.

This chapter describes the Clarion for Windows Procedure templates. It
also mentions several Control templates, which are the subject of the
next chapter.

Component Oriented Templates

The templates are “granularized,” giving you precise control over which
components you use to build your procedures.

You can use the generic Window Procedure template to define a window
or dialog box. Most of the functionality of a Procedure template actually
comes from the Control templates in it. Control templates provide both
controls and the executable code to handle them.

To illustrate, consider a browse window. If you examine the Browse
Procedure template, you find its core is simply a collection of Control
templates. The following overview provides a conceptual walk-through
of the steps for putting the browse window together from its
components. It does not provide a precise step by step.

❏ Create a new procedure of the Window procedure type.

This Procedure template predefines a few variables which monitor
that the window is actually opened and that it processes events.

CHAPTER 6 USING THE PROCEDURE TEMPLATES

The executable code within the Procedure template is limited to
defining a small number of variables to keep track of window
management. It generates the ACCEPT loop for the window, and
then sets up the CASE statements to handle field-specific and
window-specific events:
ACCEPT

 CASE EVENT()
 ... (standard window handling code goes here)
 END
 CASE FIELD()
 ... (standard field event handling code goes here)
 END
 END

The Procedure templates also contain standard actions for any
button, entry or check box and additional prompts for “following up”
on the actions of the control. You access these prompts through the
Actions dialogs for any of these controls.

An entry box control, for example, comes with additional prompts to
help you quickly use it as a lookup field. Another example, is a
check box which provides additional prompts so that you can update
variables or hide/unhide controls when the end user checks or
unchecks the box.

Thus, a Procedure template acts as a container which automatically
provides support for additional layers of template functionality.

❏ Press the Window button to define a new window.

❏ Within the Window Formatter, choose Populate ➤ Control
Template , or choose the new Control template tool from the
Controls toolbox.

❏ Choose a Control template from the Select Control Template
dialog.

This is the point where the BrowseBox Control template, for
example, is available. You can add multiple Control templates to the
same window.

This Control template generates the executable code for handling a
list box control. The Control template also provides the additional
prompts where you can specify its behavior. This includes access to
the file schematic. The Control template then goes on to generate the
executable code for operating the browse box. It creates a VIEW to
get the field values from disk and a QUEUE to store the fields used
for a displayable page.

❏ Select fields for the browse from the file schematic.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Note that you reference the file schematic for the control, not for the
procedure. This is so that you can, if desired, place more than one
browse box control in the same window, referencing a different file
displaying from another VIEW and QUEUE. Each control, when
appropriate, has its own section in the file schematic tree.

❏ Add Insert , Change , and Delete buttons by placing the
BrowseUpdateButtons Control template in the window.

This Control template places three buttons in your window, one by
one, and handles code generation for processing the buttons.

❏ Add a Close button.

Another new Control template takes care of this task.

❏ Close the Window Formatter and save the procedure.

Depending on which templates—procedure and control—you add to
your application, embed points appear in the Embedded Source
dialogs, and new sets of Control templates become available as you
place others. The remainder of this chapter describes the procedure and
Code templates which ship with Clarion for Windows, and provides a
guide to filling out the options and prompts that implement them.

The Window Template

This template functions as a blank slate, upon which you can create your
own window procedure of any kind. Press the Window button in the
Procedure Proper ties dialog to create your window.

For the controls and Control templates you place, there are field
templates (referenced in the Window Procedure template) that add
embed points to handle the events they generate. The Embeds button
allows you to attach appropriate code, after you place the controls.

The only “predefined” elements of the template, which you can access
through the Procedure Properties dialog, are local variables produced
by the template which the executable code uses to pass data to and from
a calling procedure. These “manage” the window and procedure, keeping
track of whether the window is open, and whether the procedure needs to
respond to a global event.

CHAPTER 6 USING THE PROCEDURE TEMPLATES

The code generated by this template processes the window that you
create. It contains an ACCEPT loop for the window, and a CASE
structure for handling any field or window events.

The Procedure Properties dialog contains the following:

Files Accesses the File Schematic Definition dialog.

Window Accesses the Window Formatter. No windows
are predefined.

The ellipsis (...) button next to the Window
button allows you to edit the WINDOW
structure at the source code level.

Tip: To duplicate a window created for another application or
procedure, without copying the entire procedure, copy the
WINDOW declaration from the other source code document,
then paste it in the editor window available for the procedure
under development. Caution: do NOT do this to windows
whose controls were placed by Control templates!

Data Accesses the local data declarations for the
procedure under development. Some variables
are predefined in the template to handle inter-
procedure communication.

The ellipsis button next to the Data button
allows you to edit the data declarations for the
procedure at the source code level.

Tip: If you have a long list of local data variables, and you’re a
reasonably fast typist, it may be faster to enter them as text in
the editor window, rather than creating them one by one in a
series of Field Properties dialog boxes.

Procedures Names a new procedure to add to the
Application Tree dialog.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Embeds Accesses the locations in the generated source
code at which you can add a Code template or
your custom code. The Window Procedure
template includes the standard embed points. Of
particular importance to this template are the
Window Event Handling and Control Event
Handling embed points.

Formulas Accesses the Formula Editor. The formula’s
result field is then available from the field list in
the File Schematic Definition dialog.

Extensions Accesses extension and Control templates.
Extensions, if applicable to the procedure, can
be added or modified from this dialog. If any
Control templates were placed in the window,
this accesses the prompts for those Control
templates. Optionally, you can specify whether
or not the prompts for an extension or Control
template should display on the procedure
properties window.

In addition to the standard buttons, the Window Procedure template
contains two custom prompts:

Window Operation Mode
Allows you to override the window properties
specified in the formatter. You can specify
Normal , MDI, which adds the MDI attribute
(Multiple Document Interface), or Modal , which
adds the MODAL attribute to the WINDOW
structure. You can also select Use Window
Setting , which is the default. This specifies you
don’t want to override the Window Properties.

INI File Settings Specifies you want to save the window position
(location) in the application’s .INI file when the
end user closes it. You must enable the use of
the .INI file in the Global Properties dialog to
support this.

The Frame Template

This template provides an MDI (Multiple Document Interface) parent
frame, containing a predefined shell menu. The menu provides useful
items such as an Exit command, plus the standard editing and window
management commands.

CHAPTER 6 USING THE PROCEDURE TEMPLATES

When creating an MDI application, the Frame should be the main
procedure. You start new execution threads for each MDI child window
which you want to appear inside the frame. The Actions buttons for a
control or Menu Item provide a check box to specify the start of a new
execution thread or you can use the InitiateThread Code template.

The Procedure Properties dialog contains the following:

Files Accesses the File Schematic Definition dialog.

Window Accesses the Window Formatter. One window is
predefined. This is an MDI Parent window.
Controls can be placed only in a toolbar in this
window.

The ellipsis (...) button next to the Window
button allows you to edit the WINDOW
structure at the source code level.

The predefined window contains a shell menu,
containing the following commands: File/Print
Setup and Exit; Edit/Cut, Copy and Paste;
Window/Tile/Cascade and Arrange Icons; Help/
Contents, How to Use Help, and Search for
Help on.

Each of the predefined menu commands
implement standard (STD) behaviors. The
runtime libraries handle all the functionality
automatically, You don’t have to code anything
for these menu commands.

Data Access the local data declarations for the
procedure under development. Some variables
are predefined in the template to handle inter-
procedure communication.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

The ellipsis button next to the Data button
allows you to edit the data declarations for the
procedure at the source code level.

Procedures Names a new procedure to add to the
Application Tree dialog.

Embeds Accesses the locations in the generated source
code at which you can add a Code template or
your own custom code. The template includes
the standard embed points, plus additional
embeds for you to hook code in at the selection
of any of the menu commands, or if the menu
bar “drops” or “highlights” any of the menu
commands. If you add a Toolbar, embed points
are added for any control populated on the
Toolbar.

Formulas Accesses the Formula Editor. The result field of
the formula you create is then available from the
field list in the File Schematic Definition
dialog.

Extensions Accesses extension and Control templates.
Extensions, if applicable to the procedure, can
be added or modified from this dialog. If any
Control templates were placed in the Toolbar,
this accesses the prompts for those Control
templates. Optionally, you can specify whether
or not the prompts for an extension or Control
template should display on the procedure
properties window.

In addition to the normal buttons, the Frame procedure contains this
additional prompt:

INI File Settings Specifies you want to save the window position
(location) in the application’s .INI file when the
end user closes it. You must enable the use of
the .INI file in the Global Properties dialog to
support this.

CHAPTER 6 USING THE PROCEDURE TEMPLATES

The Menu Template

This template provides an SDI (Single Document Interface) window.

All prompts are identical to the MDI Frame template. The predefined
window contains only a single menu (File), containing a single
command (Exit).

Files Accesses the File Schematic Definition dialog.

Window Accesses the Window Formatter. One window is
predefined. Unlike the Application Frame
template, the window is a normal window, in
which you can place controls.

The ellipsis (...) button next to the Window
button allows you to edit the WINDOW
structure at the source code level.

The predefined window contains only a single
menu (File), containing a single command
(Exit).

Data Access the local data declarations for the
procedure under development. Some variables
are predefined in the template to handle inter-
procedure communication.

The ellipsis (...) button next to the Data button
allows you to edit the data declarations for the
procedure at the source code level.

Procedures Names a new procedure to add to the
Application Tree dialog.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Embeds Accesses the locations in the generated source
code at which you can add your custom code.
The template includes the standard embed
points, plus additional embeds for you to hook
code in at the selection of any of the menu
commands, or if the menu bar “drops” or
“highlights” any of the menu commands. If you
place controls in the window, additional embed
points are added for each control.

Formulas Accesses the Formula Editor. The result field of
the formula you create is then available from the
field list in the File Schematic Definition
dialog.

Extensions Accesses extension and Control templates.
Extensions, if applicable to the procedure, can
be added or modified from this dialog. If any
Control templates were placed in the window,
this accesses the prompts for those Control
templates. Optionally, you can specify whether
or not the prompts for an extension or Control
template should display on the procedure
properties window.

INI File Settings Specifies you want to save the window position
(location) in the application’s .INI file when the
end user closes it. You must enable the use of
the .INI file in the Global Properties dialog to
support this.

The Source Template

The Source Procedure template provides an elegant and simple way to
add hand code to your application. It provides two points at which to
embed your code: the data section, and the code section. The template
also makes available additional tools—the Formula Editor and File
Schematic Definition dialog—for your convenience.

The template simply declares the procedure, handles any optional
parameters, places the embedded data declarations in the data section,
begins the CODE section, then places any embedded executable code in
the CODE section:

... (local data)
CODE
... (your embedded code)

CHAPTER 6 USING THE PROCEDURE TEMPLATES

The Procedure Proper ties dialog contains the following:

Files Accesses the File Schematic Definition dialog.

Data Accesses the local data declarations for the
procedure under development.

The ellipsis (...) button next to the Data button
allows you to edit the data declarations for the
procedure at the source code level.

Procedures Names a new procedure to add to the
Application Tree.

Embeds Calls the Embedded Source dialog. The
template defines two embed points: Data
Section, and Processed Code.

When you select the Data Section, you can
select SOURCE in the Select Embed Type
dialog. You may then add variables or data
structures with the editor.

When you select Processed Code , you may
also specify that the embed point call a
procedure, or choose a Code template or write
source code to add.

Formulas Accesses the Formula Editor . The result field of
the formula you create is then available from the
field list in the File Schematic Definition
dialog.

Extensions Accesses extension and Control templates.
Extensions, if applicable to the procedure, can
be added or modified from this dialog.
Optionally, you can specify whether or not the
prompts for an Extension template should
display on the Procedure Properties window.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

The Process Template

The Process Procedure template reads through a data file and performs
an operation on each record. You can specify a filter or range of records
to perform the operation on. A predefined window contains a progress
indicator to show the end user what percentage of the operation is
complete.

Process Properties
This button provides access to the properties of
the Process.

General

Window Message Text to display on the Process Status Window.

Action for Process
This prompt allows you to specify that the
process operation changes (PUTs) or deletes the
records that it processes. You can attach code to
the Activity for each Record embed point
which the Control template adds.

CHAPTER 6 USING THE PROCEDURE TEMPLATES

Quick-Scan Records
Specifies buffered access behavior for ODBC,
ASCII, DOS, or BASIC files. These file drivers
read a buffer at a time (not a record), allowing
for fast access. In a multi-user environment
these buffers are not 100% trustworthy for
subsequent access, because another user may
change the file between accesses. As a
safeguard, the driver rereads the buffers before
each record access. To disable the reread, enable
QUICKSCAN.

Record Filter Type an expression to limit the process to only
those records which match the filter expression.
This filters all displayable records. When a
Record filter is used in conjunction with a
Range Limit, only those records within the
specified range are considered.

Approx Record Count
This number is used by the progress dialog
which appears during the process.

Range Limits

This tab is only available if you specify a Key for the File in the File
Schematic.

Range Limit Field Type in the field name or press the ellipsis (...)
button to select the field from the Component
list. The Range Limit Field must be a
component of the Access Key specified in the
File Schematic dialog. The range limit is key-
dependent; the generated source code uses the
SET statement to find the first valid record.

Range Limit Type When a field is selected for the Range Limit
Field, this specifies the method of determining
the records for inclusion in the list box.

Current Value—Signifies the value contained
in the key field at the beginning of the ACCEPT
loop. This is the value used for the range for the
duration of the procedure.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Single Value—Specifies a variable containing
the limiting value. Only records matching the
variable are included. Enter a variable in the
Range Limit Value box which appears, or press
the ellipses (...) button to select the variable
from the File Schematic.

Range of Values—Allows you to specify upper
and lower limits. Enter a variable in the Low
Limit and High Limit Value boxes which
appears, or press the ellipsis (...) button to select
the variables from the File Schematic.

Hot Fields

When you select the Hot Fields tab, you can select a field (or fields) to
add to the VIEW. When scrolling through the file, the generated source
code reads the data for these fields from the VIEW, rather than from the
disk. This optimizes performance. Elements of the Primary Key and the
current key are always included in the VIEW, so they do not need to be
inserted in the Hot Field list. Any field used in a computation or filter
must be in the VIEW.

In addition, you can BIND fields through this dialog. You must BIND
any field used in a filter.

The External Template

The External Procedure template declares a procedure contained in an
external library (*.LIB only) or object file. The Application Generator
writes no source code. The project system links in the external file as a
module.

After selecting the External template type from the Select Procedure
Type dialog, choose OBJ or LIB from the Select Module Type dialog.

In the Module Name field, select the file name of the external library or
object file from the drop down list . Only those external modules already
included in the project appear, so if your module does not appear, add
the new module first. To add the module in the Application Generator,
choose Application ➤ Insert Module .

Optionally type parameter declarations in the Prototype field.

CHAPTER 6 USING THE PROCEDURE TEMPLATES

The Bro wse Template

The Browse Template, as noted in the introduction to the chapter,
consists of several Control templates which add a list box, update
buttons, a Select button and a Close button to the default window. The
Control templates also add the Browse Box and Update Buttons prompts
to the Procedure Properties dialog.

Additionally, the generated code includes a ROUTINE called
RefreshWindow which implements the lookups of related records,
updating list boxes where necessary, and gets the current data to the
controls in the window. Additional code actually updates the controls,
i.e., refreshing it for the “screen.”

The Procedure Properties dialog contains the following options:

Files Accesses the File Schematic Definition dialog.
You can name the FILE structure(s) within the
Procedure Properties dialog. The File
Schematic Definition dialog automatically
attaches your choices to the list box browse
control.

Window Accesses the Window Formatter. One window is
predefined.

The ellipsis (...) button next to the Window
button allows you to edit the WINDOW
structure at the source code level.

Data Accesses the local data declarations for the
procedure under development. Some variables
are predefined in the template to handle inter-
procedure communication.

The ellipsis (...) button next to the Data button
allows you to edit the data declarations for the
procedure at the source code level.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Procedures Names a new procedure to add to the
Application Tree .

Embeds Accesses the locations in the generated source
code at which you can add a Code template or
your own custom code.

Formulas Accesses the Formula Editor . The result field of
the formula you create is then available from the
field list in the File Schematic Definition
dialog.

Extensions Accesses extension and Control templates.
Extensions, if applicable to the procedure, can
be added or modified from this dialog. If any
Control templates were placed in the window,
this accesses the prompts for those Control
templates. Optionally, you can specify whether
or not the prompts for an extension or Control
template should display on the procedure
properties window.

The Browse Box Control template adds a button—Browse Box
Behavior — to the Procedure Proper ties dialog. This provides access
to a tabbed dialog where you can specify options for the Browse Box
Control.

CHAPTER 6 USING THE PROCEDURE TEMPLATES

Default Behavior

This tab contains the prompts that control the default behavior of the
Browse Box Control.

Quick-Scan Records
Specifies buffered access behavior for ODBC,
ASCII, DOS, or BASIC files. These file drivers
read a buffer at a time (not a record), allowing
for fast access. In a multi-user environment
these buffers are not 100% trustworthy for
subsequent access, because another user may
change the file between accesses. As a
safeguard, the driver rereads the buffers before
each record access. To disable the reread, enable
QUICKSCAN.

Locator A locator is a screen entry field that updates a
component of the primary file access key. When
the end user types a character(s) in the entry
box, then presses TAB, the list box updates to
show the closest matching record. This is
disabled when browsing a file in Record Order
(without specifying a KEY in the File
Schematic)

Choose Step for a list box which, when the user
types in a character, advances the selection to
the nearest match in the key field. Retyping the
same character advances to the next occurrence
of a field beginning with that character.

Choose Entry for an entry box to hold the value
for the locator. When the end user places a value
in the entry box, TAB or reselecting the list box
will move the selection to the nearest matching
record.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Choose Incremental for a locator which accepts
multiple characters and moves the selection to
the nearest matching record.

Choose None for no locator.

Record Filter Type an expression to limit the contents of the
browse list to only those records matching the
filter expression. The filter is loops through all
displayable records to select those that meet the
filter. You must BIND any file field that is used
in a filter expression. The Hot Fields TAB
enables you to BIND fields.

Range Limit Field In conjunction with the Range Limit Type ,
specifies a record or group of records for
inclusion in the list box. Choose a field by
pressing the ellipsis (...) button. The range limit
is key-dependent; the generated source code
uses the SET statement to find the first valid
record. This is only available if you specify a
Key for the File in the File Schematic.

Range Limit Type When a field is selected for Range Limit Field ,
specifies a record or group of records for
inclusion in the list box.

Current Value signifies the current value of
Range Limit Field .

Single Value allows you to limit the list to a
single value. Specify the variable containing that
value in the Range Limit Value box which
appears.

Range of V alues allows you to specify upper
and lower limits. Specify the variable containing
the values in the Low Limit and High Limit
Value boxes.

File Relationship allows you to choose a range
limiting file from a 1:MANY relationship. This
limits the browse to display only those child
records matching the current record in the Parent
file. For example, if your browse was a list of
Orders, you could limit the display to only those
orders for the current Customer (in the
Customer file).

CHAPTER 6 USING THE PROCEDURE TEMPLATES

Reset Fields button

Pressing this button displays a list box allowing
you to add Reset Fields. If the value of any field
in the Reset Fields list changes the Browse Box
is refreshed.

Scroll Bar Behavior button
Pressing this button displays a dialog where you
can define the way a scroll bar works.

Scroll Bar Behavior
Specifies the manner the scroll bar works.
Choose Fixed Thumb or Movable Thumb
from the drop down list.

Key Distribution This specifies the distribution of the points
of the scroll bar. Choose one of the two
predefined distributions (Alpha or Last
Names), or Custom, or Runtime from the
drop down list.

Alpha defines 100 evenly distributed points
alphabetically.

Last Names defines 100 points distributed
as last names are commonly found in the
United States. If the access key is sorted on
numeric data, you should a custom or
runtime distribution.

Custom allows you to define your own
points.

Runtime reads the first and last record and
computes the values for 100 evenly
distributed break points in between.

Custom Key Distribution
Allows you to specify the break points for
distribution along the scroll bar (useful
when you have data with a skewed
distribution). Insert the values for each point
in the list. String constants should be in
single quotes (' ').

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Runtime Distribution Parameters
Allows you to specify the type of characters
considered when determining the
distribution points. This is only appropriate
when the Free Key Element is a STRING or
CSTRING. Check the boxes for the types of
characters you wish to include for
consideration.

Conditional Behavior

This tab contains a list box that allows you to define specific behavior
based on conditions. Add conditions to the list by pressing the Insert
button. This displays a dialog where you define the Condition and the
desired behavior when that condition is true.

At runtime these conditions are evaluated, and the behavior for the first
true condition in the list is used.

In this dialog you can specify:

Condition Any valid expression.

Key to Use Optionally, the Key to use to determine the sort
order of the browse box when this condition is
true.

The remaining fields and buttons are the same as the Default behavior
tab.

Hot Fields

When you select the Hot Fields tab, you can select a field (or fields) to
keep “live” in the QUEUE. When scrolling through the file, the
generated source code reads the data for these fields from the QUEUE,
rather than from the disk. This speeds up list box updates.

Specifying "Hot" fields also allows you to place file field controls
outside of the Browse Box that are updated whenever a different record
is selected in the list box. Elements of the Primary Key and the current
key are always included in the QUEUE, so they do not need to be
inserted in the Hot Field list.

This dialog also enables you to BIND a field. You must BIND any file
field that is used in a filter expression or as a field to total.

CHAPTER 6 USING THE PROCEDURE TEMPLATES

Totaling

This TAB contains a list box that allows you to define total fields for a
browse box. Press the Insert button to add total fields.

This displays a dialog where you can define total fields for a BrowseBox
Control.

Total Target Field The variable to store the total. This can be a
local, module, or global variable. You may also
use a file field; however, you must write the
code to update the data file.

Total Type Choose Count, Sum, or Average from the drop
down list. Count tallies the number of records.
Sum adds the values of the Field to Total.
Average determines the arithmetic mean of the
Field to Total.

Field to T otal The field to be summed or averaged. This box is
disabled when the total field is a Count Type.

Total Based On Choose Each Record Read or Specified
Condition from the drop down list. This
specifies whether to consider every record or
only those that meet a certain filter criteria.

Total Condition The condition to meet when using a Total based
on a specified condition. You can use any valid
expression.

Colors

This tab is only available if you check the Color Cells box in the List
Box Formatter. It displays a list of the fields which have been specified
to allow colorization.

To specify colors, highlight the desired field and press the Properties
button.

Customize Colors

This dialog allows you to specify the default colors for Normal
Foreground and Background; and for the Foreground and Background
colors to display when the row is selected.

Below the default colors section, is the Conditional Color Assignments
list. To add a condition and specify special colors to display for the field
when the condition is true, press the Insert Button.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

At runtime these conditions are evaluated, and the colors for the first true
condition in the list are used.

Icons

This TAB is only available if you check the Icons box in the List Box
Formatter. It displays a list of the fields which have been specified to
allow Icon display. To specify Icons, highlight the desired field and press
the Properties button.

Customize BrowseBox Icons

This dialog allows you to specify the default Icon for the field.

Default Icon The default icon to display. You may specify a
standard Icon or an Icon (.ICO) file on disk.

Conditional Icon Usage
Below the default Icon section, is the
Conditional Icon Usage list. To add a condition
and specify special Icons to display when the
condition is true, press the Insert Button. At
runtime these conditions are evaluated, and the
Icon for the first true condition in the list is
used.

Update Buttons Control template

The Update Buttons Control template adds a prompt for naming or
choosing the update procedure.

Update Procedure Type the name of a new procedure, or choose an
existing procedure from the drop-down list. If
you name a new procedure, the Application
Generator automatically adds it to the
Application Tree .

Allow Edit via Popup
Check this box to enable a popup menu when
the user right-clicks on the List Box. The popup
menu calls the update procedure to Insert,
Change or Delete a record.

CHAPTER 6 USING THE PROCEDURE TEMPLATES

The Form Template

The Form Template provides a predefined window, with update buttons,
plus an action message text control. See the section explaining the
Update Buttons Control template for details on setting options for the
Actions dialogs for the included Control templates.

The Form Template Procedure Proper ties dialog contains the
following items:

Files Accesses the File Schematic Definition dialog.
You can name the FILE structure(s) within the
Procedure Properties dialog. The File
Schematic Definition dialog automatically
attaches your choices to the file I/O controls.

Window Accesses the Window Formatter. One window is
predefined, containing an Action Message
control, and the Update Buttons Control
template.

The ellipsis (...) button next to the Window
button allows you to edit the WINDOW
structure at the source code level.

Data Accesses the local data declarations for the
procedure under development. Some variables
are predefined in the template to handle inter-
procedure communication.

The ellipsis (...) button next to the Data button
allows you to edit the data declarations for the
procedure at the source code level.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Procedures Names a new procedure to add to the
Application Tree dialog.

Embeds Accesses the locations in the generated source
code at which you can add a Code template or
your own custom code.

Formulas Accesses the Formula Editor. The result field of
the formula you create is then available from the
field list in the File Schematic Definition
dialog.

Extensions Accesses extension and Control templates.
Extensions, if applicable to the procedure, can
be added or modified from this dialog. If any
Control templates were placed in the window,
this accesses the prompts for those Control
templates. Optionally, you can specify whether
or not the prompts for an extension or Control
template should display on the procedure
properties window.

In addition to the normal buttons, the Form procedure contains
additional prompts:

INI Settings Specifies you want to save the window position
(location) in the application’s .INI file when the
end user closes it. You must enable the use of
the .INI file in the Global Properties dialog to
support this.

The SaveButton Control template adds these prompts:

Allow: Check the appropriate boxes for permitted
operations: Inserts, Changes, or Deletes.

When called for Delete
Allows you to specify what displays when this
procedure is called to delete a record. Standard
Warning displays a message box prompting for
confirmation of the delete. Show Form displays
the form. Automatic Delete allows records to
be deleted without a display or prompt for
confirmation.

Access a dialog to specify display messages and their locations by
pressing the Messages and Titles button.

CHAPTER 6 USING THE PROCEDURE TEMPLATES

Insert Message Specifies the text for the action message when
the procedure is called to add a record. The
default text is “Record will be added.”

Change Message Specifies the text for the action message when
the procedure is called to change a record. The
default text is “Record will be Changed.”

Delete Message Specifies the text for the action message when
the procedure is called to delete a record. The
default text is “Record will be deleted.”

On Aborted add/change
Specifies the desired behavior when an update is
aborted. The choices are Offer to save changes,
Confirm cancel, or Cancel without confirming.

Location of Message
Specifies where the message displays. Choose
None/Window Control to display the message
in a control. Choose Title Bar or Status Bar to
display the message in on of those areas.
Optionally specify which area of the status bar
in the Status Bar Section box.

Display Record Identifier on the Title Bar
Allows you to append a string to the caption on
the Title bar.

Record Identifier Specifies the string to append to the Title bar
caption, which you can use to identify the
record. Type a string in the Record Identifier
box. To use a variable name, precede it with an
exclamation point (!).

Access a dialog to specify fields to initialize by pressing the Field
Priming button. "Field Priming" allows you to provide a default data
value for fields in a new record. This value supersedes any initial value
specified in the data dictionary. You can select a field and set an initial
value in the Field Priming dialog.

The ValidateRecord extension template adds prompts for Control Value
Validation Conditions.

Validate when the control is accepted
Specifies that validity checking occurs when the
control generates an EVENT:Accepted, which
occurs when the user completes or moves focus
from the field.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Validate during NonStop Select
Specifies that validity checking occurs when any
control value changes if the window is in
AcceptAll (Non-Stop) mode and has focus.

Do Not Validate Opens the Do Not Validate... dialog, which
allows you to insert fields into a list; these will
be excluded from validity checks.

The Report Template

Press the Report button in the Procedure Proper ties dialog to create
your report. The Procedure template includes a window to show the
progress of the report processing. The Procedure Proper ties dialog
also includes a checkbox to specify whether you wish to generate a print
preview function for your report.

The Procedure Properties dialog contains the following:

Files Accesses the File Schematic Definition dialog.

Report Accesses the Report Formatter. No report is
predefined.

The ellipsis (...) button next to the Report button
allows you to edit the REPORT structure at the
source code level.

Data Accesses the local data declarations for the
procedure under development. Some variables
are predefined in the template to handle inter-
procedure communication.

The ellipsis (...) button next to the Data button
allows you to edit the data declarations for the
procedure at the source code level.

CHAPTER 6 USING THE PROCEDURE TEMPLATES

Procedures Names a new procedure to add to the
Application Tree dialog.

Embeds Accesses the locations in the generated source
code at which you can add a Code template or
your custom code.

Formulas Accesses the Formula Editor. The result field of
the formula you create is then available from the
field list in the File Schematic Definition
dialog.

Extensions Accesses extension and Control templates.
Extensions, if applicable to the procedure, can
be added or modified from this dialog. If any
Control templates were placed on the report, this
accesses the prompts for those Control
templates. Optionally, you can specify whether
or not the prompts for an extension or Control
template should display on the procedure
properties window.

The Report Procedure template reads through a data file and updates the
controls in the report DETAIL for each record. You can specify a filter or
range of records to perform the operation on. The predefined window
contains a progress indicator to show the end user what percentage of the
operation is complete.

Window Message Specifies the message to display in the progress
window.

In addition to the normal buttons, the procedure contains a button for
Report properties. This allows access to a dialog where you specify
options for the report.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

General

Print Preview When checked, the Print Preview checkbox
specifies that the end user sees the report in
preview mode before printing. The end user can
then print the report, or cancel it.

Quick-Scan Records
Specifies buffered access behavior for ODBC,
ASCII, DOS, or BASIC files. These file drivers
read a buffer at a time (not a record), allowing
for fast access. In a multi-user environment
these buffers are not 100% trustworthy for
subsequent access, because another user may
change the file between accesses. As a
safeguard, the driver rereads the buffers before
each record access. To disable the reread, enable
QUICKSCAN.

Record Filter Type an expression to limit the report to only
those records which match the filter expression.
This filters all displayable records. When a
Record filter is used in conjunction with a
Range Limit, only those records within the
specified range are considered.

Approx. Record Count
Type an approximate number of records you
expect the report to process. The progress
indicator uses this value.

Range Limits

This tab is only available if you specify a Key for the File in the File
Schematic.

Range Limit Field Type in the field name or press the ellipsis (...)
button to select the field from the Component
list. The Range Limit Field must be a
component of the Access Key specified in the
File Schematic dialog. The range limit is key-
dependent; the generated source code uses the
SET statement to find the first valid record.

Range Limit Type When a field is selected for Range Limit Field,
this specifies the method of determining the
records for inclusion in the report.

CHAPTER 6 USING THE PROCEDURE TEMPLATES

Current Value—Signifies the value contained
in the key field at the beginning of the ACCEPT
loop. This is the value used for the range for the
duration of the procedure.

Single Value—Specifies a variable containing
the limiting value. Only records matching the
variable are included. Enter a variable in the
Range Limit Value box which appears, or press
the ellipses (...) button to select the variable
from the File Schematic.

Range of Values—Allows you to specify upper
and lower limits. Enter a variable in the Low
Limit and High Limit Value boxes which
appears, or press the ellipses (...) button to select
the variables from the File Schematic.

Hot Fields

When you select the Hot Fields tab, you can select a field (or fields) to
add to the VIEW. When scrolling through the file, the generated source
code reads the data for these fields from the VIEW, rather than from the
disk. This optimizes performance. Elements of the Primary Key and the
current key are always included in the VIEW, so they do not need to be
inserted in the Hot Field list. Any field used in a computation or filter
must be in the VIEW.

In addition, you can BIND fields through this dialog. You must BIND
any field used in a filter.

Detail Filters

Select this tab to specify conditional print filters for detail bands. This
enables you to suppress printing of a Detail band unless the filter
expression is true.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

The Viewer Template

The Viewer Template provides a predefined window, with a list box for
viewing the contents of an ASCII text file, and a Close button. If you
wish to use the template to view the same ASCII file all the time, you
can use it as is; to add the ability to let the end user choose to view any
ASCII file selected from a standard file dialog, you’ll probably add an
entry box to hold a variable naming the file, and the DOS File Lookup
Control template.

The Viewer Template Procedure Proper ties dialog contains the
following items:

Files Accesses the File Schematic Definition dialog.

Window Accesses the Window Formatter. One window is
predefined, containing a list box control, an
ASCIISearch button, an ASCIIPrint button, and
a Close button.

The ellipsis (...) button next to the Window
button allows you to edit the WINDOW
structure at the source code level.

The List Properties dialog shows that a
QUEUE called Queue:ASCII fills the list box.
The Procedure template generates the source
code for filling the QUEUE.

To quickly add an entry box to hold a file name
for viewing, choose Populate ➤ Field , or use
the Populate tool in the Controls toolbox. In the
Select Field dialog, choose the ASCIIFileName
variable from the Global Data section. This
variable is added by the Procedure template.

CHAPTER 6 USING THE PROCEDURE TEMPLATES

To add an ellipsis (...) button, which then allows
the end user to pick a file from a standard file
dialog, choose the Control template tool from
the Controls toolbox, click in the window, then
choose the DOS File Lookup Control template.
See the following chapter for further
information.

To set up the viewer so that the end user has no
choice of file, do not add additional controls or
Control templates, but instead assign the desired
file name to the ASCIIFileName variable, which
is a global variable added by the Procedure
template.

Data Accesses the local data declarations for the
procedure under development. Some variables
are predefined in the template to handle inter-
procedure communication.

The ellipsis (...) button next to the Data button
allows you to edit the data declarations for the
procedure at the source code level.

Procedures Names a new procedure to add to the
Application Tree dialog.

Embeds Accesses the locations in the generated source
code at which you can add your custom code.
The template includes only the standard embed
points.

Formulas Accesses the Formula Editor. The result field of
the formula you create is then available from the
field list in the File Schematic Definition
dialog.

Extensions Accesses extension and Control templates.
Extensions, if applicable to the procedure, can
be added or modified from this dialog. If any
Control templates were placed in the window,
this accesses the prompts for those Control
templates. Optionally, you can specify whether
or not the prompts for an extension or Control
template should display on the procedure
properties window.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

INI Settings Specifies you want to save the window position
(location) in the application’s .INI file when the
end user closes it. You must enable the use of
the .INI file in the Global Properties dialog to
support this.

ASCII Box Control Allows you to add a description and file name
(for the text file to view). Be sure to place a
variable name, preceded by an exclamation
point (!) when you wish to allow the end user to
choose a file to view. Optionally check the Warn
if No File box to display a message at runtime if
no file is selected for viewing. Optionally check
the Display Number of Bytes read to display
the file’s size.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

77

UUUUUSINGSINGSINGSINGSING C C C C CONTROLONTROLONTROLONTROLONTROL, C, C, C, C, CODEODEODEODEODE, , , , , ANDANDANDANDAND E E E E EXTENSIONXTENSIONXTENSIONXTENSIONXTENSION

TTTTTEMPLEMPLEMPLEMPLEMPLAAAAATESTESTESTESTES

In this chapter, you will learn how to
use the control templates,
whichconsist of predefined window
controls, plus the code for creating,
maintaining, and integrating them
with each other.

The SaveButton
Control template
controls file I/O. It
allows you to specify
the behavior of an
update procedure and
the messages the user
sees.

The DateTimeDisplay
Extension template
enables you to display
the time and/or date in
the status bar, or a
control.

The RelationTree
Control template
enables access to
multiple levels of a file
relationship. A single
RelationT ree control
can replace several
Browse-Form pairs.

The BrowseBox Control
template allows you to
quickly add a browse
list box to a window.
You can easily add
additional BrowseBox
controls and
synchronize them

CHAPTER 7 USING CONTROL, CODE, AND EXTENSION TEMPLATES

The Control templates add functionality to the Procedure templates. The
Control templates consist of predefined window controls, plus the code
for creating, maintaining, and integrating them with each other.

For example, besides the list boxes that support a browse, mentioned in
the previous chapter, other Control templates control file I/O. The
generated source code can automatically prompt the user with a warning
that there were changes made to the file, should the end user try to close
the window before saving the changes to disk.

This chapter describes the Control templates included in Clarion for
Windows, and incorporates descriptions of the prompts generated from
the field templates where necessary. It also briefly describes the code and
Extension templates.

ADDING CONTROL TEMPLATES

When starting with a new procedure, to add a Control template:

❏ Define a window, by pressing the Window button in the Procedure
Properties dialog.

❏ In the Window Formatter, add a Control template to a window by
clicking on the Control template tool in the Controls tool box.

❏ Choose a Control template from the Select Control template
dialog, then place the control on the window or report by clicking on
the desired location.

❏ A control (the type of control depends on the Control template)
appears in the window.

❏ RIGHT-CLICK on the control, then choose Actions from the popup
menu to access the prompts specific to the control; these define its
functionality.

❏ Select the other tabs on the Properties dialog to modify a control’s
properties; these define its appearance, location, and functionality.

Once a Control template is added to a procedure, a check box appears
next to the Extensions button in the Procedure Properties dialog. You
can access the prompts added by the Control template through this
button.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

When starting with a Procedure template which contains a predefined
windows and Control templates, you can edit the functionality and
appearance of the Control templates either through the right-click popup
menu in the Window Formatter or the Extensions buttons in the
Procedure Properties dialog.

Control templates can also be placed in a report, depending on whether
its functionality can logically be extended to “paper.”

CONTROL TEMPLATES

BrowseBox

This Control template places a LIST control in a window. The LIST
control’s popup menu takes you to the List Box Formatter , so that you
can choose which fields or variables populate the list, and define how
they appear in the list box (including enabling colorization and Icon
display). The Actions tab on the List Properties provides the template
prompts which allows you to define the browse box’s functionality,
including record filters, range limits, totaling, scroll bar behavior, and
locator behavior.

You can place the BrowseBox Control template in a window by clicking
on the template control tool, then selecting BrowseBox - Browse List
Box in the Select Control template dialog. Then CLICK in the window
to place the actual list box control.

Properties

After placing the LIST control, RIGHT-CLICK on the LIST control and
choose Properties from the popup menu to view the List Properties
dialog. See the Setting Control Properties chapter for full information
about the options available in this dialog. This section describes only the
options directly affected by the BrowseBox Control template.

The template automatically defines the FROM attribute for the LIST
control, which names the source (a QUEUE) for the data in the list. The
standard templates name the QUEUE as Queue:Browse. The template
contains a group (a template routine) that checks to see if you’ve applied
range limits, or are using the list as a lookup. If so, it locates the correct
record. The template then loads as many records into the QUEUE as will
fit in the list. The QUEUE is filled from a VIEW which gets the values
from fields in data files on disk.

CHAPTER 7 USING CONTROL, CODE, AND EXTENSION TEMPLATES

RIGHT-CLICK on the LIST control and choose List Box Format from the
popup menu to access the List Box Formatter to choose the fields and
variables to fill the list box, and define their appearance.

The Populate button allows you to add a field or variable to the list box,
one field or variable at a time. The Select Field dialog presents the file
schematic. Within the schematic, each browse control appears, with a
tree control marked “To Do” beneath it. To add a field from a data file
defined in the dictionary:

❏ Select the “To Do” item.

❏ Press the Insert button

❏ Select the file from the Insert File dialog. The Browse Control item
displays the name of the file.

❏ If you want to use a Key, press the Key button to select the key from
the Key Access dialog. If you do not select a Key, the list is
displayed in record order, which also disables the ability to set
Range Limits.

❏ Select a field from the Fields list, which appears in the right side of
the Select Field dialog.

Repeat this for each field you want to add to the list box.

To add a variable to the list box, select Global Data or Local Data from
the Select Field dialog, select the desired variable from the Fields list,
then press the Select button.

After you select the file, key and field (or variable) the List Field
Properties dialog appears. This allows you to precisely define its
appearance. The Using the List Box Formatter chapter fully describes the
options available in this dialog.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Actions

The Actions tab of the List Properties dialog (accessed by the
Actions... command on the popup menu you see when you right-click the
control) displays the template prompts which allows you to specify
numerous template options, as well as add custom embedded source
code for standard list box events, such as when the end user moves the
selection bar. The dialog contains the following options:

Default Behavior

This tab contains the prompts that control the default behavior of the
Browse Box Control.

Quick-Scan Records
Specifies buffered access behavior for ODBC,
ASCII, DOS, or BASIC files. These file drivers
read a buffer at a time (not a record), allowing
for fast access. In a multi-user environment
these buffers are not 100% trustworthy for
subsequent access, because another user may
change the file between accesses. As a
safeguard, the driver rereads the buffers before
each record access. To disable the reread, enable
QUICKSCAN.

Locator A locator is a screen entry field that updates a
component of the primary file access key. When
the end user types a character(s) in the entry
box, then presses TAB, the list box updates to
show the closest matching record. This is
disabled when browsing a file in Record Order
(without specifying a KEY in the File
Schematic).

CHAPTER 7 USING CONTROL, CODE, AND EXTENSION TEMPLATES

Choose Step for a list box which, when the user
types in a character, advances the selection to
the nearest match in the key field. Retyping the
same character advances to the next occurrence
of a field beginning with that character.

Choose Entry for an entry box to hold the value
for the locator. When the end user places a value
in the entry box, TAB or reselecting the list box
will move the selection to the nearest matching
record.

Choose Incremental for a locator which accepts
multiple characters and moves the selection to
the nearest matching record.

Choose None for no locator.

Record Filter Type an expression to limit the contents of the
browse list to only those records matching the
filter expression. The filter is loops through all
displayable records to select those that meet the
filter.

You must BIND any file field that is used in a
filter expression. The Hot Fields tab enables
you to BIND fields.

Range Limit Field In conjunction with the Range Limit Type ,
specifies a record or group of records for
inclusion in the list box. Choose a field by
pressing the ellipsis (...) button. The range limit
is key-dependent; the generated source code
uses the SET statement to find the first valid
record. This is enabled only after you specify a
Key for the file associated with this control.

Range Limit Type When a field is selected for Range Limit Field ,
specifies a record or group of records for
inclusion in the list box.

Current Value signifies the current value of
Range Limit Field .

Single Value allows you to limit the list to a
single value. Specify the variable containing that
value in the Range Limit Value box which
appears.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Range of V alues allows you to specify upper
and lower limits. Specify the variable containing
the values in the Low Limit and High Limit
Value boxes.

File Relationship allows you to choose a range
limiting file from a 1:MANY relationship. This
limits the browse to display only those child
records matching the current record in the Parent
file. For example, if your browse was a list of
Orders, you could limit the display to only those
orders for the current Customer (in the
Customer file).

Reset Fields button

Pressing this button displays a list box allowing
you to add Reset Fields. If the value of any field
in the Reset Fields list changes the Browse Box
is refreshed.

Scroll Bar Behavior button
Pressing this button displays a dialog where you
can define the way a scroll bar works.

Scroll Bar Behavior
Specifies the manner the scroll bar works.
Choose Fixed Thumb or Movable Thumb
from the drop down list.

Key Distribution This specifies the distribution of the points
of the scroll bar. Choose one of the two
predefined distributions (Alpha or Last
Names), or Custom, or Runtime from the
drop down list.

Alpha defines 100 evenly distributed points
alphabetically.

Last Names defines 100 points distributed
as last names are commonly found in the
United States. If the access key is sorted on
numeric data, you should a custom or
runtime distribution.

Custom allows you to define your own
points.

CHAPTER 7 USING CONTROL, CODE, AND EXTENSION TEMPLATES

Runtime reads the first and last record and
computes the values for 100 evenly
distributed break points in between.

Custom Key Distribution
Allows you to specify the break points for
distribution along the scroll bar (useful
when you have data with a skewed
distribution). Insert the values for each point
in the list. String constants should be in
single quotes (' ').

Runtime Distribution Parameters
Allows you to specify the type of characters
considered when determining the
distribution points. This is only appropriate
when the Free Key Element is a STRING or
CSTRING. Check the boxes for the types of
characters you wish to include for
consideration.

Conditional Behavior

This tab contains a list box that allows you to define specific behavior
based on conditions. Add conditions to the list by pressing the Insert
button. This displays a dialog where you define the Condition and the
desired behavior when that condition is true.

At runtime these conditions are evaluated, and the behavior for the first
true condition in the list is used.

In this dialog you can specify:

Condition Any valid expression.

Key to Use Optionally, the Key to use to determine the sort
order of the browse box when this condition is
true.

The remaining fields and buttons are the same as the Default behavior
tab.

Hot Fields

When you select the Hot Fields tab, you can select a field (or fields) to
keep “live” in the QUEUE. When scrolling through the file, the
generated source code reads the data for these fields from the QUEUE,
rather than from the disk. This speeds up list box updates.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Specifying "Hot" fields also allows you to place file field controls
outside of the Browse Box that are updated whenever a different record
is selected in the list box. Elements of the Primary Key and the current
key are always included in the QUEUE, so they do not need to be
inserted in the Hot Field list.

This dialog also enables you to BIND a field. You must BIND any file
field that is used in a filter expression or as a field to total.

Totaling

This tab contains a list box that allows you to define total fields for a
browse box. Press the Insert button to add total fields.

This displays a dialog where you can define total fields for a Browse
Box Control.

Total Target Field The variable to store the total. This can be a
local, module, or global variable. You may also
use a file field; however, you must write the
code to update the data file.

Total Type Choose Count, Sum, or Average from the drop
down list. Count tallies the number of records.
Sum adds the values of the Field to Total.
Average determines the arithmetic mean of the
Field to Total.

Field to T otal The field to be summed or averaged. This box is
disabled when the total field is a Count Type.

Total Based On Choose Each Record Read or Specified
Condition from the drop down list. This
specifies whether to consider every record or
only those that meet a certain filter criteria.

Total Condition The condition to meet when using a Total based
on a specified condition. You can use any valid
expression.

CHAPTER 7 USING CONTROL, CODE, AND EXTENSION TEMPLATES

Colors

This tab is only available if you check the Color Cells box in the List
Box Formatter. It displays a list of the fields which have been specified
to allow colorization.

To specify colors, highlight the desired field and press the Properties
button.

Customize Colors

This dialog allows you to specify the default colors for Normal
Foreground and Background; and for the Foreground and Background
colors to display when the row is selected.

Below the default colors section, is the Conditional Color
Assignments list. To add a condition and specify special colors to
display for the field when the condition is true, press the BButton.

At runtime these conditions are evaluated, and the colors for the first true
condition in the list are used.

Icons

This tab is only available if you check the Icons box in the List Box
Formatter. It displays a list of the fields which have been specified to
allow Icon display.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

To specify Icons, highlight the desired field and press the Properties
button.

Customize BrowseBox Icons

This dialog allows you to specify the default Icon for the field.

Default Icon The default icon to display. You may specify a
standard Icon or an Icon (.ICO) file on disk.

Conditional Icon Usage
Below the default Icon section, is the
Conditional Icon Usage list. To add a
condition and specify special Icons to display
when the condition is true, press the Insert
Button. At runtime these conditions are
evaluated, and the Icon for the first true
condition in the list is used.

BrowseUpdateButtons

This Control template provides a quick way to add standard
functionality for managing the records in a browse list box.

The BrowseUpdateButtons Control template adds three button controls
for acting upon records inside a browse box. When pressed, the buttons
retrieve the appropriate record and call the procedure specified as the
update procedure. Pressing the Change, Insert, or Delete button sets
the variable GlobalRequest to ‘ChangeRecord,’ ‘InsertRecord,’ or
‘DeleteRecord’ respectively.

CHAPTER 7 USING CONTROL, CODE, AND EXTENSION TEMPLATES

The Properties dialog for each button control is identical to the normal
Button Properties dialog. See the Setting Control Properties chapter for
a complete description.

The Actions tab allows you to name the update procedure and specify
special keys for implementing the button actions.

Update Procedure Type a name or select from the drop down list.
The Application Generator automatically adds
the update procedure to the Procedure tree.

Allow Edit via Popup
Check this box to create a popup menu to call
the update procedure when the end user RIGHT-
CLICKS on the list box. The menu displays the
text specified to display on the buttons.

When Pressed The standard set of prompts for buttons (see
Setting Control Properties). Normally, when
using a Control template, these prompts are not
used.

BrowseSelectButton

This Control template provides a quick way to choose a record from a
list box when the procedure is called to select a record.

The generated source code gets the currently selected record from the
list, and closes down the browse. For the end user, pressing the Select
button is equivalent to double-clicking an item in the list.

The Properties dialog for the button is identical to the normal Button
Properties dialog. See the Setting Control Properties chapter for a
complete description.

The Actions tab contains the following:

Hide the Select button when not applicable
Specifies that the control should be hidden when
the procedure is not called to select a record.

When Pressed The standard set of prompts for buttons (see
Setting Control Properties). Normally, when
using a Control template, these prompts are not
used.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

SaveButton

This Control template provides an OK button for your window, plus the
ability to display an action message for the end user. The SaveButton
also handles the method of deleting records.

The Properties dialog for the Save button is the normal Button
Properties dialog. See the Setting Control Properties chapter for a
complete description.

The Actions tab contains the following options:

Allow: Check the appropriate boxes for permitted
operations: Inserts, Changes, or Deletes.

When called for Delete
Allows you to specify what displays when this
procedure is called to delete a record. Standard
Warning displays a message box prompting for
confirmation of the delete. Show Form displays
the form. Automatic Delete allows records to
be deleted without a display or prompt for
confirmation.

Messages and Titles

Access a dialog to specify display messages and their locations by
pressing the Messages and Titles button.

Insert Message Specifies the text for the action message when
the procedure is called to add a record. The
default text is “Record will be added.”

Change Message Specifies the text for the action message when
the procedure is called to change a record. The
default text is “Record will be Changed.”

Delete Message Specifies the text for the action message when
the procedure is called to delete a record. The
default text is “Record will be deleted.”

CHAPTER 7 USING CONTROL, CODE, AND EXTENSION TEMPLATES

On Aborted Add/Change
Specifies the action to take when the user
presses the Cancel button while adding or
modifying a record. Choose Offer to save
changes, Confirm Cancel, or Cancel without
Confirming from the drop down list.

Location of Message
Specifies where the message displays. Choose
None/Window Control to display the message
in a control. Choose Title Bar or Status Bar to
display the message in on of those areas.
Optionally specify which area of the status bar
in the Status Bar Section box.

Display Record Identifier on the Title Bar
Allows you to append a string to the caption on
the Title bar.

Record Identifier Specifies the string to append to the Title bar
caption, which you can use to identify the
record. Type a string in the Record Identifier
box. To use a variable name, precede it with an
exclamation point (!).

Field Priming

Access a dialog to specify fields to initialize by pressing the Field
Priming button. "Field Priming" allows you to provide a default data
value for fields in a new record. This value supersedes any initial value
specified in the data dictionary. You can select a field and set an initial
value in the Field Priming dialog.

CancelButton

This Control template primarily provides a convenient control to allow
the user to close a window, and for the developer to add code to “undo”
while closing down the procedure.

The generated source code posts a close window event. If differs from
the CloseButton Control template (below), in that it sets the
LocalResponse variable to ‘RequestCancelled’.

You can insert the executable code you need to “clean up” at an embed
point.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

The Actions tab contains the following:

When Pressed The standard set of prompts for buttons (see
Setting Control Properties). Normally, when
using a Control template, these prompts are not
used.

When Pressed The standard set of prompts for buttons (see
Setting Control Properties). Normally, when
using a Control template, these prompts are not
used.

CloseButton

This Control template adds a single button control marked Close . The
generated source code closes down the current window. You specify, via
the Action button, precisely what happens when the end user presses the
button.

The properties dialog for CloseButton is identical to the normal Button
Properties dialog. See the Setting Control Properties chapter for a
complete description.

The Actions tab contains the following:

When Pressed The standard set of prompts for buttons (see
Setting Control Properties). Normally, when
using a Control template, these prompts are not
used.

ASCIIBox

This Control template adds a list box in which you can display an ASCII
(text) file. If you wish to view the same ASCII file all the time, you can
specify a file name in the Prompts dialog.

The Actions tab contains the following:

Description Allows you to add a description and to display
in the progress window which displays when
opening the file.

File Name to View Specifies the path and name of the file to view,
or a variable preceded by an exclamation point
(!).

CHAPTER 7 USING CONTROL, CODE, AND EXTENSION TEMPLATES

Display Number of Bytes Read
Check this box if you want to display the file’s
size in the progress dialog.

Warn the user if the file cannot be found?
Check this box if you want to display a message
at runtime if the specified file cannot be found.

ASCIIPrintButton

This Control template adds a button named Print, and the underlying
code necessary for printing an ASCII (text) file. Use this Control
template together with the ASCII Box Control template.

Edit the Actions only if you wish to add another, separate action to take
place after printing. All the code necessary for managing the print job
itself is handled automatically.

The Actions tab contains the following:

When Pressed The standard set of prompts for buttons (see
Setting Control Properties). Normally, when
using a Control template, these prompts are not
used.

ASCIISearchButton

This Control template adds two buttons named Find and Find Next, and
the underlying code necessary for a modal search dialog, allowing the
end user to find text in an ASCII (text) file. Use this Control template
together with the ASCII Box Control template.

Edit the Actions only if you wish to add another, separate action to take
place after the search. All the code necessary for managing the search
itself is handled automatically.

The Actions tab contains the following:

When Pressed The standard set of prompts for buttons (see
Setting Control Properties). Normally, when
using a Control template, these prompts are not
used.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

DOSFileLookup

This Control template adds an ellipsis (...) button which leads the end
user to a standard Open File dialog. You can specify a file mask, and a
return variable to hold the end user’s choice.

The properties dialog for DOSFileLookup is identical to the normal
Button Properties dialog. See the Setting Control Properties chapter for
a complete description.

The Actions tab contains the following:

File Dialog Header
Type the text for the caption of the Open File
dialog.

DOS FileName Variable
Press the ellipsis (...) button to view the File
Schematic dialog, and choose a variable to
receive the end user’s choice. You can also type
the variable name directly into the entry box.

Default Directory Allows you to specify a directory name where
the Open File starts.

Mask Description Type a file type description. The string appears
in the drop down list in the Open File dialog.
You can add additional masks by pressing the
More File Masks button

CHAPTER 7 USING CONTROL, CODE, AND EXTENSION TEMPLATES

File Mask Type a file specification, such as “*.TXT” or use
multiple patterns for this mask separating each
with a semi-colon, such as "*.BMP;*.GIF".

More File Masks Optionally, press this button to add additional
file masks. These masks are then available to the
user through the drop down list in the File Open
dialog.

When Pressed The standard set of prompts for buttons (see
Setting Control Properties). Normally, when
using a Control template, these prompts are not
used.

FileDrop

This Control template scrolls through a data file and assigns the value of
the selected field to the ?Use variable. It does not allow adding records.
If you want the ability to add records “on-the-fly,” use the
FileDropCombo Control template.

There are two different scenarios for which you can use this Control
template:

■ Storing and Displaying the same data

■ Displaying text data and storing a code.

Storing and Displaying the same data

In this scenario you want to select a value from the lookup file and store
it in the Primary file. For example, A Product File with a field storing a
color, with a lookup file of colors.

In this case, complete the prompts as follows:

Properties:

?Use The field to which the value is assigned from the
field in the lookup file.

Field to Fill From The field from the lookup file. This value is
assigned to the Target Field.

Remove Duplicates
Check this box to remove duplicates from the
list displayed.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Target Field The field to which the value is assigned from the
field in the lookup file. In this case this is the
same as the ?USE variable.

Record Filter Optionally, type an expression to limit the
contents of the drop down list to only those
records which match the filter expression.

Default to First entry if Use Variable empty
Automatically assign the value of the first field
in the list to the ?USE variable. The fields in the
list are sorted alphabetically (unless you specify
Sort Fields).

Displaying text data and storing a code

In this scenario you want to select a value from a textual field in the
lookup file and store its associated code in the Primary file. For example,
A Product File with a field storing a Location Code, with a lookup file of
Locations. You want the user to select the Location from a list of
descriptions, but store the Location Number in the Product file.

In this case, complete the prompts as follows:

?Use Create a local variable that matches the text
field.

Using the List Box Formatter, populate the list with the text field from
the lookup file. It is automatically assigned to the ?Use variable.

Field to Fill From The code field from the lookup file. This value
is assigned to the Target Field.

Remove Duplicates
Check this box to remove duplicates from the
list displayed.

Target Field The field to which the value is assigned from the
field in the lookup file.

Record Filter Optionally, type an expression to limit the
contents of the drop down list to only those
records which match the filter expression.

CHAPTER 7 USING CONTROL, CODE, AND EXTENSION TEMPLATES

Default to First entry if Use Variable empty
Automatically assign the value of the first field
in the list to the ?USE variable. The fields in the
list are sorted alphabetically (unless you specify
Sort Fields).

Properties:

The List Properties for this control are the same as a list ; however, the
From entry requires some explanation.

From: When placing a File Drop Control, this field is
filled in with Queue:FileDrop. You should not
modify this.

Note: You can use list box formatter to populate this control, but
only the first field populated is valid for assignment.

Sort Fields

This tab allows you to add fields by which the list is sorted. The sort
order is independent of Keys. Press the Insert button to add fields to the
list. This sorts the list dynamically at runtime.

Range Limits

This tab appears only after you specify a Key for the file associated with
this control.

Range Limit Field In conjunction with the Range Limit Type ,
specifies a record or group of records for
inclusion in the list box. Choose a field by
pressing the ellipsis (...) button. The range limit
is key-dependent; the generated source code
uses the SET statement to find the first valid
record.

Range Limit Type When a field is selected for Range Limit Field ,
specifies a record or group of records for
inclusion in the list box.

Current Value signifies the current value of
Range Limit Field .

Single Value allows you to limit the list to a
single value. Specify the variable containing that
value in the Range Limit Value box which
appears.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Range of V alues allows you to specify upper
and lower limits. Specify the variable containing
the values in the Low Limit and High Limit
Value boxes.

File Relationship allows you to choose a range
limiting file from a 1:MANY relationship. This
limits the browse to display only those child
records matching the current record in the Parent
file.

Colors

This tab is only available if you check the Color Cells box in the List
Field Properties in the List Box Formatter. It displays a list of the fields
which have been specified to allow colorization.

To specify colors, highlight the desired field and press the Properties
button.

Customize Colors

This dialog allows you to specify the default colors for Normal
Foreground and Background; and for the Foreground and Background
colors to display when the row is selected.

Below the default colors section, is the Conditional Color Assignments
list. To add a condition and specify special colors to display for the field
when the condition is true, press the Insert Button.

At runtime these conditions are evaluated, and the colors for the first true
condition in the list are used.

Icons

This tab is only available if you check the Icons box in the List Box
Formatter. It displays a list of the fields which have been specified to
allow Icon display. To specify Icons, highlight the desired field and press
the Properties button.

Customize BrowseBox Icons

This dialog allows you to specify the default Icon for the field.

Default Icon The default icon to display. You may specify a
standard Icon or an Icon (.ICO) file on disk.

CHAPTER 7 USING CONTROL, CODE, AND EXTENSION TEMPLATES

Conditional Icon Usage
Below the default Icon section, is the
Conditional Icon Usage list. To add a condition
and specify special Icons to display when the
condition is true, press the Insert Button. At
runtime these conditions are evaluated, and the
Icon for the first true condition in the list is
used.

FileDropCombo

This Control template scrolls through a data file and assigns the value of
the selected field to the ?Use variable. It also allows adding records by
typing a new value in the entry portion of the combo box.

There are two different scenarios for which you can use this Control
template:

■ Storing and Displaying the same data

■ Displaying text data and storing a code.

Storing and Displaying the same data

In this scenario you want to select a value from the lookup file and store
it in the Primary file. For example, A Product File with a field storing a
color, with a lookup file of colors.

In this case, complete the prompts as follows:

Properties:

?Use The field to which the value is assigned from the
field in the lookup file.

Field to Fill From The field from the lookup file. This value is
assigned to the Target Field.

Remove Duplicates
Check this box to remove duplicates from the
list.

Target Field The field to which the value is assigned from the
field in the lookup file. In this case this is the
same as the ?USE variable.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Record Filter Optionally, type an expression to limit the
contents of the drop down list to only those
records which match the filter expression.

Default to First entry if Use Variable empty
Automatically assign the value of the first field
in the list to the ?USE variable. The fields in the
list are sorted alphabetically (unless you specify
Sort Fields).

Update Behavior

In this scenario, a form is NOT needed to update the lookup file.
Checking the Allow Updates box enables updates directly from this
control.

Displaying text data and storing a code

In this scenario, you want to select a value from a text field in the lookup
file and store its associated code in the Primary file. For example, A
Product File with a field storing a Location Code, with a lookup file of
Locations. You want the user to select the Location from a list of
descriptions, but store the Location Number in the Product file.

In this case, complete the prompts as follows:

?Use Create a local variable that matches the textual
field.

Using the List Box Formatter, populate the list with the textual field
from the lookup file. It is automatically be assigned to the ?Use variable.

Field to Fill From The code field from the lookup file. This value
is assigned to the Target Field.

Remove Duplicates
Check this box to remove duplicates from the
list displayed.

Target Field The field to which the value is assigned from the
field in the lookup file.

Record Filter Optionally, type an expression to limit the
contents of the drop down list to only those
records which match the filter expression.

CHAPTER 7 USING CONTROL, CODE, AND EXTENSION TEMPLATES

Default to First entry if Use Variable empty
Automatically assign the value of the first field
in the list to the ?USE variable. The fields in the
list are sorted alphabetically (unless you specify
Sort Fields).

Update Behavior

In this scenario, a form is needed to update the lookup file, if you want
to allow updates, specify a form procedure.

Properties:

The List Properties for this control are the same as a list; however, the
From entry requires some explanation.

From: When placing a File Drop Combo Control, this
field is filled in with Queue:FileDropCombo.
You should not modify this.

Note: You can use list box formatter to populate this control, but
only the first populated is valid for the entry portion of the
control.

Range Limits

This tab appears only after you specify a Key for the file associated with
this control.

Range Limit Field In conjunction with the Range Limit Type ,
specifies a record or group of records for
inclusion in the list box. Choose a field by
pressing the ellipsis (...) button. The range limit
is key-dependent; the generated source code
uses the SET statement to find the first valid
record.

Range Limit Type When a field is selected for Range Limit Field ,
specifies a record or group of records for
inclusion in the list box.

Current Value signifies the current value of
Range Limit Field .

Single Value allows you to limit the list to a
single value. Specify the variable containing that
value in the Range Limit Value box which
appears.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Range of V alues allows you to specify upper
and lower limits. Specify the variable containing
the values in the Low Limit and High Limit
Value boxes.

File Relationship allows you to choose a range
limiting file from a 1:MANY relationship. This
limits the browse to display only those child
records matching the current record in the Parent
file.

Colors

This tab is only available if you check the Color Cells box in the List
Field Properties in the List Box Formatter. It displays a list of the fields
which have been specified to allow colorization.

To specify colors, highlight the desired field and press the Properties
button.

Customize Colors

This dialog allows you to specify the default colors for Normal
Foreground and Background; and for the Foreground and Background
colors to display when the row is selected.

Below the default colors section, is the Conditional Color Assignments
list. To add a condition and specify special colors to display for the field
when the condition is true, press the Insert Button.

At runtime these conditions are evaluated, and the colors for the first true
condition in the list are used.

Icons

This TAB is only available if you check the Icons box in the List Box
Formatter. It displays a list of the fields which have been specified to
allow Icon display. To specify Icons, highlight the desired field and press
the Properties button.

Customize BrowseBox Icons

This dialog allows you to specify the default Icon for the field.

Default Icon The default icon to display. You may specify a
standard Icon or an Icon (.ICO) file on disk.

CHAPTER 7 USING CONTROL, CODE, AND EXTENSION TEMPLATES

Conditional Icon Usage
Below the default Icon section, is the
Conditional Icon Usage list. To add a condition
and specify special Icons to display when the
condition is true, press the Insert Button. At
runtime these conditions are evaluated, and the
Icon for the first true condition in the list is
used.

RelationTree

The tree control is actually a list box formatted to display as a tree.

Using the RelationTree Control template, you can specify multiple file
levels to display on multiple levels of a tree control. The Relation Tree
control can display an unlimited number of related files—with an
associated update procedure for each level. The provides an alternative
for the Browse-Form paradigm. A single RelationTree control can
replace several Browse-Form pairs.

The RelationTree template employs a fully-loaded QUEUE for the root
level. The child levels are demand-loaded when a branch is expanded.
This template is not appropriate for databases with a very large primary
file. You should use the BrowseBox Control template, which is page-
loaded, instead.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

To create a tree using the Relation Tree Control template:

1. Place a RelationTree Control template on a window.

The List Box Formatter appears. Do Not use the formatter to
populate your tree.

2. If you want to enable colorization or icon display in your tree
control, press the Properties button on the List Box Formatter and
check the appropriate boxes.

3. Press the OK button on the List Box Formatter .

4. RIGHT-CLICK on the Relation Tree Control template and choose
Actions from the popup menu.

5. Press the Files button to specify the file schematic for the control.

6. Specify the File details:

Tree Heading Text An optional text heading at the top of the tree.
Tree Heading Text is required to enable the user
to add a record at the root level.

Tree heading Icon An optional Icon at the top of the tree. Icons
must be enabled in the List Box Formatter for
this prompt to be enabled.

Primary File

Display String The field name or text to display for the primary
file level.

Update Procedure The Update Procedure to call for this level.

Secondary Files

Optionally, specify display strings and Update
Procedures for any secondary files by
highlighting the secondary file and pressing the
Properties button below the Secondary Files
list box.

Calling Update Procedures

One of the most powerful features of the Relation Tree Control template
is the ability to call the update procedure for the selected level of the tree
(if an Update Procedure is specified for that level).

The Update Procedure is called to change a record when the user DOUBLE-
CLICKS on a record.

CHAPTER 7 USING CONTROL, CODE, AND EXTENSION TEMPLATES

A RIGHT-CLICK calls a popup menu to insert, change, or delete records.
The menu displays the text displayed on the associated
RelationTreeUpdateButtons.

A third method to call a update procedures is to place a
RelationTreeUpdateButtons Control template on the window.

RelationTreeUpdateButtons

This Control template adds three buttons (Insert , Change , and Delete)
which allow the user to call the associated update procedure for the
selected level of a Relation Tree (if an update procedure has been
specified) . There are no prompts for this control. The Update Procedure
is specified for each level of the Relation Tree Control template.

The Change and Delete buttons correspond to the currently highlighted
record. The Insert button adds a child record (the next level down the tree
structure).

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

CODE TEMPLATES

Code templates generate executable code. The purpose is to make
customization—adding embedded source code fragments that do exactly
what you want it to—easier. Each Code template has one well-defined
task. For example, the Initiate Thread Code template simply starts a new
execution thread, and no more. Typically, the Code template provides a
dialog box with options and instructions. Clarion for Windows contains
the following Code templates:

InitiateThread

When opening an MDI window from an Application Frame, you must
initiate an execution thread. This Code template provides an easy way to
initiate a thread.

In the Prompts for Initiate Thread dialog, simply name the procedure
that opens the MDI window.

You can optionally add a line of code to execute if the application was
unable to open the thread. Type in the edit box labelled Error Handling .
For example,

BEEP; MESSAGE(‘Could not Start Thread’,’Error’,ICON:HAND)

would beep and display a message box with the halt (hand) icon, if the
thread failed to start.

You can add a procedure name to call upon an error by typing the name
of the procedure in the Error Handling box. You would then add the
procedure to the Application Tree with the Insert Procedure command.

CallProcedureAsLookup

This Code template calls a procedure to select a record. It sets a variable
called RequestCompleted to advise whether the lookup was successful.

Lookup Procedure
Specifies the procedure to call.

Code before Type in any executable code to execute before
performing the lookup. Multiple statements can
be used if separated by a semicolon.

CHAPTER 7 USING CONTROL, CODE, AND EXTENSION TEMPLATES

Code After, Completed
Type in any executable code to execute after
completing a lookup. Multiple statements can be
used if separated by a semicolon.

Code After, Canceled
Type in any executable code to execute if the
lookup is canceled. Multiple statements can be
used if separated by a semicolon.

ControlValueValidation

This Code template gets the value of a control and matches it against the
value in the key. You can add this Code template to an ENTRY, SPIN,
LIST, or COMBO control; at the Accepted or Selected embed point. The
code generated by this Code template gets the value in the control, then
matches it against the value in the key.

It can also call a lookup procedure, to let the end user select a value. You
can check whether the end user has successfully completed the lookup
procedure by checking the value of the LocalResponse variable.

LookupNonRelatedRecord

This Code template is used to perform a lookup of a value based on a
relationship, whether it is or is not defined in the data dictionary (Ad hoc
relation). You can add this Code template to the Lookup Up Related
Records embed point.

Lookup Key Type in the key name or press the ellipsis (...)
button to select the key from the File Schematic.

The lookup key is used to perform the lookup
into the lookup file. This must be a unique key.
If the key is a multicomponent key, the other
key elements must be primed before executing
this Code template.

Lookup Field Type in the field name or press the ellipsis (...)
button to select the field from the Component
list.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

The Lookup Field must be a component of the
Lookup Key. This is the unique value within the
lookup file.

Related Field Type in the related field or press the ellipsis (...)
button to select it from the File Schematic.

The Related Field provides the unique value
used to perform the lookup.

This code template generates the following code:

LookUpField = RelatedField ! Move value for lookup
GET(LookUpFile,LookUpKey) ! Get value from file
IF ERRORCODE() ! IF record not found
CLEAR(LookupfileRecord) ! Clear the record buffer

END ! END (IF record not found)

CloseCurrentWindow

This Code template simply posts an EVENT:CloseWindow, which tells
the currently active window to close. There are no prompts to fill in.

EXTENSION TEMPLATES

Extension templates add functionality to procedures, but are not bound
to a control or embed point. Each Extension template has one well-
defined task. For example, the Date Time Display enables you to display
the date and a running clock.

From a Procedure Properties dialog, add an Extension template by
pressing the Extensions button.

Clarion for Windows contains the following Extension templates:

DateTimeDisplay

This Extension template adds to the functionality of a Procedure
template, allowing you to display the time and/or date in the status bar,
or a control.

The options which appear in the Date and Time Display dialog are
divided into two group boxes— Date Display and Time Display—

CHAPTER 7 USING CONTROL, CODE, AND EXTENSION TEMPLATES

Display in Window
Check the box or boxes to add the display to
your window.

Picture Choose a date and/or time display picture from
the drop down list. The list displays examples,
such as "October 31, 1959," and "5:30P.M."

Other Picture Type in a picture of your choice, if the picture
type you wish does not appear in the list. See
also: Date Picture Tokens or Time Picture
Tokens in the Language Reference.

Day of Week (Date only) Optionally displays the day of week.

Location Choose between displaying the date and/or time
on the status bar, or in a control.

Status Bar Section
When the Date or Time should appear on the
status bar, specify the status bar section number.

Display Control When the Date or Time should appear in a
control, choose the control from a drop down
list of field equate labels for the window.

RecordValidation

This Extension template adds functionality to a Procedure template by
enforcing data dictionary-defined control value validation. It also allows
you to specify controls to exclude from validation.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Validate when the control is Accepted
Specifies that validity checking occurs when the
control generates an EVENT:Accepted, which
occurs when the end user completes or moves
the focus from the field.

Validate during NonStop Select
Specifies that validity checking occurs when any
control value changes if the window is in
AcceptAll (Non-Stop) mode and has focus.

Do Not Validate Opens the Do Not Validate dialog, which allows
you to select fields from a drop down list. The
fields you choose will be excluded from validity
checks.

196 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

88

UUUUUSINGSINGSINGSINGSING THETHETHETHETHE W W W W WINDOINDOINDOINDOINDOWWWWW F F F F FORMAORMAORMAORMAORMATTTTTTERTERTERTERTER

Using the Window Formatter, you
visually design your application’s
windows and dialogs. The Window
Formatter generates Clarion
Language statements from the
windows you design on screen; and,
if you hand-edit the generated source
code, the changes will appear on
screen when you reload the
Window Formatter.

Preview your window,
align its controls, set
the tab order, and Snap
to Grid options.

When you call the
Window Formatter from
the Application
Generator or the Text
Editor, you first choose
the type of window to
create.

The Window Properties
dialog allows you to set
important options for
your wind ow, such as
whether it should have
a system menu.

To place a control,
choose a control type
from the Toolbox, then
click in the window
under construction.

CHAPTER 8 USING THE WINDOW FORMATTER 197

Use the Window Formatter to visually design Window elements—
windows and controls—on screen. The Window Formatter
automatically generates the Clarion language source code that describes
these elements and the Application Generator places the generated
source code at the appropriate point in your application.

This chapter will:

◆ Tell you how to use the Window Formatter to create a new
structure or edit an existing one.

◆ List the types of window properties and describe how to add
them to a window.

◆ Explain the Preview mode, which allows you to see the
windows you create exactly as they will appear to the user.

◆ Detail the menus and commands available in the Window
Formatter .

◆ Introduce the various window control properties dialogs you
will use with the Window Formatter . The Setting Control
Properties chapter discusses these in more detail.

OVERVIEW: CREATING YOUR APPLICATION’S WINDOWS

Most likely, your application will use a number of windows to display
instructions, accept input, and provide data or other information to the
user. In general, this is what you will do to put such a window on the
screen:

1. Select or create the procedure that will display the window.

The Window
Formatter
displays a

sample window
showing the
controls you

place in it. You
can resize any

control by
dragging its

handles.

198 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

See the Using the Application Generator chapter for more
information.

2. From the Application Tree dialog, display the Procedure
Properties dialog for the procedure

DOUBLE-CLICK the procedure name, OR RIGHT-CLICK the procedure
name and select Properties from the popup menu, or highlight the
procedure name and press the Properties button.

3. Optionally specify data, files, or both, that the procedure will use.

Press the Data and Files buttons and make your choices in the
dialog boxes which appear, then return to the Procedure
Properties dialog. See the Using the Application Generator
chapter for more information.

4. Press the Window button to design your window. Or, from the
Application Tree dialog, RIGHT-CLICK the procedure name and select
Window from the popup menu.

If no default window is defined, the New Structure dialog appears,
and you will have to decide what type of window to use. See
Choosing a Window Type below. If a default window is already
defined, the Window Formatter appears.

Tip: You can also access the Window Formatter from the text
editor! To create a new window from the text editor, place the
cursor on a blank line, then choose Edit ➤➤➤➤➤ Format Structure
or press CTRL+F. To edit an existing window, place the cursor
anywhere within the source code structure that defines the
window, then choose Edit ➤➤➤➤➤ Format Structure or press CTRL+F.
See WINDOW and APPLICATION in the Language Reference
for more information.

5. From the New Structure dialog, select the type of window the
procedure should display .

Specify your choice by DOUBLE-CLICKING it, or by highlighting a
choice from the Type list, then pressing the OK button. The
Window Formatter appears.

6. Customize the window by setting its size and properties.

See Customizing Your Application’s Windows below.

7. Optionally, place a menu in the window using the Menu Editor .

The Creating Menus and Toolbars chapter explains this procedure.

8. Place controls in the window—these might include entry boxes for
editing fields from the database, command buttons for initiating or
cancelling an action, text, strings, or prompts containing instructions
for the user, and other controls to enhance the appearance and ease of
use of the window.

CHAPTER 8 USING THE WINDOW FORMATTER 199

See Placing Controls in a Window below, and see the Setting
Control Properties chapter.

9. Return to the Procedure Properties dialog.

CHOOSING A WINDOW TYPE

Overview: Windows

In most Windows programs there are three types of screen windows
used: application windows, document windows, and dialog boxes. An
application window is the first window opened in a Windows program,
and it usually contains the main menu as the entry point to the rest of the
program. All other windows in the program are document windows or
dialog boxes.

Along with these three screen window types, there are two user interface
design conventions that are used in Windows programs: the Single
Document Interface (SDI), and the Multiple Document Interface (MDI).

An SDI program usually only contains linear logic that allows the user to
take only one execution path (thread) at a time; it does not open separate
execution threads which the user may move between. This is the same
type of program logic used in most DOS programs. An SDI program
would not contain a Clarion APPLICATION structure as its application
window. The Clarion WINDOW structure (without an MDI attribute) is
used to define an SDI program’s application window, and the subsequent
document windows or dialog boxes opened on top of it.

An MDI program allows the user to choose multiple execution paths
(threads) and change from one to another at any time. This is a very
common Windows program user interface. It is used by applications as a
way of organizing and grouping windows which present several
execution paths for the user to take.

A Clarion APPLICATION structure defines the MDI application
window. The MDI application window acts as a parent for all the MDI
child windows (document windows and dialog boxes), in that the child
windows are clipped to its frame and automatically moved when the
application frame is moved. They can also be concealed en masse by
minimizing the parent. There may be only one APPLICATION open at
any time in a Clarion Windows program.

200 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Document windows and dialog boxes are very similar in that they are
both defined as Clarion WINDOW structures. They differ in the
conventional context in which they are commonly used and the
conventions regarding appearance and attributes. In many cases, the
difference is not distinguishable and does not matter. The generic term
for both document windows and dialog boxes is "window" and that is the
term used throughout this text.

Document windows usually display data. By convention they are
movable and resizable. They usually have a title, a system menu, and
maximize button. For example, in the Windows environment, the "Main"
program group window that appears when you DOUBLE-CLICK on the
"Main" icon in the Program Manager’s desktop, is a document window.

Dialog boxes usually request information from the user or alert the user
to some condition, usually prior to performing some action requested by
the user. They may or may not be movable, and so, may or may not have
a system menu and title. By convention, they are not resizable, although
they can have a maximize button which gives the dialog two alternate
sizes. A dialog box may be system modal (the user must respond before
doing anything else in Windows), application modal (the user must
respond before doing anything in the application), or modeless. For
example, in the Clarion environment, the window that appears from the
File menu’s Open selection is an application modal dialog box that
requests the name of the file to open.

Default Window Structures

Some of the types of windows you can create appear in the New
Structure dialog. The items in the New Structure dialog represent
Clarion structures. You may see window structures, or report structures,
or both, depending on how you access the dialog. A window structure is
a group of Clarion Language statements that defines all the attributes of a
window. You may want to think of a window structure as the definition
of the window.

This section discusses only the default window structures supplied with
this release; however, once you choose a default window structure, you
may modify it. You may even add your own default window structures by
editing the C:\CW15\LIBSRC\DEFAULTS.CLW file. If you edit the
DEFAULTS.CLW file, be sure to precede each new structure with the
following line:

 !!> title

where “title” is the structure name that should appear in the New
Structure dialog.

CHAPTER 8 USING THE WINDOW FORMATTER 201

Following is a description of the types of window structures provided
with this release.

Window

To create a general purpose document window or dialog box, choose
Window from the New Structure dialog. The Window Formatter
generates a non-Multiple Document Interface (non-MDI) WINDOW
structure with no controls. That is, a bare or empty window. See the
Windows Design Issues Appendix for more information on MDI versus
non-MDI windows and their uses.

This window will accept any controls (list boxes, entry boxes, buttons,
etc.) you want to add. See Placing Controls in a Window below. Also see
the Setting Control Properties chapter.

Window with OK & Cancel

To create a general purpose dialog box with OK and Cancel buttons,
choose Window with OK & Cancel from the New Structure dialog.
Again, the Window Formatter generates a non-Multiple Document
Interface (non-MDI) WINDOW structure, however, this window already
contains OK and Cancel buttons. The window will accept any other
controls (list boxes, entry boxes, buttons, etc.) you want to add. You may
also delete the OK and Cancel buttons if you want to.

At the source code level, the only difference between this choice and the
previous one is that the window structure starts out with two additional
statements creating the OK and Cancel buttons—there is no difference
in the window type, and there are no procedure calls associated with the
two buttons. Clarion provides this additional choice simply for
convenience, because these two buttons are such common elements in
many application windows.

Tip: For most data entry windows, you can use one of these two
choices (dialog boxes). The window might appear with a single
line frame, entry fields for the user to type in the data for a
new record, plus the command buttons. When the user
presses the OK button, the application might add the record; if
the user presses the Cancel button, the operation should be
abandoned.

The New
Structure dialog

lists the types of
windows and

report structures
you can create.

202 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

System Modal Window

To create a system modal window, choose System Modal Window from
the New Structure dialog. System modal means the user will not be
able to do anything else—not even switch to another application—until
the window closes. The Window Formatter generates a WINDOW
structure with the MODAL attribute.

Tip : To signal a critical error, use a system modal window.
Windows is a cooperative multi-tasking environment, in which
the user should be in control as much as possible. A system
modal window temporarily limits the user’s freedom to run
another application. Unless your application has a compelling
reason to halt all system activity — for example, a severe file
error which might result in lost data unless corrected at once
— limit your application’s use of this type of window.

MDI Child Window

To create a document window which will appear only inside an
application frame, choose MDI Child Window . The Window Formatter
generates a WINDOW structure with the MDI attribute.

In general, MDI—the Multiple Document Interface—provides a method
for presenting and editing more than one document, or more than one
view of a document, within a single application. That is, the same MDI
window may be opened many times from the same application. Each
document appears in a child window inside the main application window.

The child window typically appears as a normal window, with frame,
system menu, maximize and minimize buttons, and icon. The user
should be able to manipulate it like any other window—except that the
child window cannot move outside the main application window. A
typical use of an MDI window might be to present a different, or second,
or third view of your application’s database.

All MDI windows must reside in separate procedures and execution
threads from the APPLICATION window (see MDI Parent Frame
below). This means the Application Generator must use the START
function to begin a new execution thread for the MDI window called
from the APPLICATION frame. You may execute more than one MDI
window in the thread.

CHAPTER 8 USING THE WINDOW FORMATTER 203

Tip: Any menus and toolbars you create for an MDI window will
automatically merge with the APPLICATION’s menu and
toolbar when the MDI child is the active window!

MDI Parent Frame

To create the APPLICATION frame, or main window, for an MDI
application, choose MDI Parent Frame . This provides the “outside”
frame in which the MDI child windows appear.

Tip: Typically, the APPLICATION window should have a resizeable
frame, plus a system menu, maximize and minimize buttons,
and a menu. Usually, the File menu should provide a
command to open or create MDI child windows, and a Window
menu should provide commands for managing the separate
child windows.

The APPLICATION window cannot have controls inside the window—
in fact, Clarion will not allow you to place any there. MDI child
windows contain all controls in an MDI application. The
APPLICATION window should hold only the child windows, and
optionally, a toolbar (which may contain controls).

Place any global menu commands or toolbar controls in the
APPLICATION window. Each child window inherits these commands
and toolbars, and may add additional items, or enable and disable global
commands and toolbar controls as necessary.

The APPLICATION window and its MDI children must not reside in the
same procedure. This requires the use of the START function, so that the
MDI child runs in a separate thread. Multiple MDI windows may run in
the same thread, but not the same thread as the APPLICATION window.

Tip: When the OPEN(AppFrame) statement executes, Clarion hides
the window until it encounters the first DISPLAY statement or
ACCEPT loop. This allows your application to make any
cosmetic changes to the APPLICATION window before the
user sees it.

204 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

CUSTOMIZING YOUR APPLICATION’S WINDOWS

Once you specify the type of window to create, the Window Formatter
appears. It contains five major components to help you create or edit
your window.

Window Formatter Tools

Sample Window

The Window Formatter is a visual design tool. You always see a
sample of the window you’re working on, as
you work on it. In addition, you can see the
window, exactly as it will appear to the end user
by choosing Preview! from the action bar.

Controls Toolbox

The Window Formatter contains a floating Controls toolbox,
similar to those found in many draw or
paintbrush programs. Simply choose a control
from the toolbox (CLICK on it), then CLICK in the
sample window to place the control in the
window.

String Allows you to place a STRING control on the
window under construction. See Setting String
Control Properties.

Prompt Allows you to place a PROMPT control on the
window under construction. See Setting Prompt
Control Properties.

Entry Box Allows you to place an ENTRY control on the
window under construction. See Setting Entry
Box Properties.

Text Box Allows you to place a TEXT control on the
window under construction. See Setting Text
Control Properties.

No Tool String Prompt Entry Box

Text Box Group Box Option Box Button

Check Box Radio Button List Box Combo Box

Spin Box Progress Bar Image Region

Line Box Ellipse Pr operty Sheet

Tab Dictionary Field Custom Control Control Template

CHAPTER 8 USING THE WINDOW FORMATTER 205

Group Box Allows you to place a GROUP control (group
box) on the window under construction. See
Setting Group Box Control Properties.

Option Box Allows you to place an OPTION control
(OPTION structure, which appears as a group
box with radio buttons) on the window under
construction. See Setting Option Box Control
Properties.

Button Allows you to place a BUTTON control on the
window under construction. See Setting Push
Button Properties.

Check Box Allows you to place a CHECKBOX control on
the window under construction. See Setting
Check Box Properties.

Radio Button Allows you to place a RADIO control on the
window under construction. See Setting Radio
Button Properties.

List Box Allows you to place a LIST control (list box, or
drop down list box) on the window under
construction. See Creating List Boxes in the
Setting Control Properties chapter.

Combo Box Allows you to place a COMBO control (combo
box, or drop combo box) on the window under
construction. See Setting Combo Box
Properties.

Spin Box Allows you to place a SPIN control on the
window under construction. See Setting Spin
Box Properties.

Progress Bar Allows you to place a PROGRESS control on
the window under construction. See Setting
Progress Bar Properties.

Image Allows you to place an IMAGE control (graphic
image) on the window under construction. See
Setting Image Control Properties.

Region Allows you to place a REGION control on the
window under construction. See Setting Region
Control Properties.

206 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Line Allows you to place a LINE control on the
window under construction. See Setting Line
Control Properties.

Box Allows you to place a BOX control on the
window under construction. See Setting Box
Control Properties.

Ellipse Allows you to place an ELLIPSE control on the
window under construction. See Setting Ellipse
Control Properties.

Sheet Allows you to place a SHEET control on the
window under construction. Sheet controls
contain Tab controls. See Setting Sheet Control
Properties.

Tab Allows you to place a TAB control on the
window under construction. Tab controls may
contain any other control types. See Setting Tab
Control Properties.

Dictionary Field Allows you to select a field defined in the Data
Dictionary, and place the control specified in the
data dictionary, plus an associated PROMPT
control, on the window under construction.

Custom Control Allows you to place a CUSTOM control (Visual
Basic custom control) on the window under
construction. See Setting Custom Control
Properties.

Control Template Allows you to place a Control Template on the
window under construction. See the Using
Control, Code, and Extension Templates
chapter.

Display or hide the Controls toolbox by choosing Options ä
Toolbox. All the controls in the toolbox are also
available from the Controls menu. See Placing
Controls in a Window below. Also see the
Setting Control Properties chapter.

Tip: Position the cursor over any tool and wait for half a second. A
tool tip appears telling you the type of control that will be
created by this tool.

CHAPTER 8 USING THE WINDOW FORMATTER 207

Fields Toolbox

The Window Formatter contains a floating Populate Field toolbox.
This toolbox allows you to quickly “populate” a
window with entry controls for fields in your data
files. First, choose a file from the drop down list,
then DOUBLE-CLICK the field you want to appear on
your window to place both a prompt, and an entry
control for the selected field. The type of control
(entry box, check box, radio button, etc.) is
determined by the settings for this particular field in
the Data Dictionary. The field is automatically
aligned.

Display or hide the Populate Field toolbox by
choosing Options ➤ Fieldbox. Resize the
Populate Field toolbox by placing the cursor on the
border of the box. When the cursor changes to a
double headed arrow, CLICK and DRAG.

You may also populate a window with entry controls
for fields in your data files by using the Populate
menu, or by using the Dictionary Fields tool in the
Controls toolbox.

Property Toolbox

The Window Formatter’s Property toolbox allows you to quickly
specify the appearance and content of the text on
each control within the window and on the window
title bar. Control the font, size, style, and content of
all your text, using standard word processor buttons
and drop down lists.

Display or hide the Property toolbox by choosing
Options ➤ Propertybox. Resize the Property
toolbox by placing the cursor on the border of the
box. When the cursor changes to a double headed
arrow, CLICK and DRAG.

208 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Align Toolbox

The Window Formatter’s Align toolbox allows you to quickly,
professionally, and precisely align the controls
in your window. Select the controls to align
(CTRL+CLICK allows you to select multiple
controls, or you can “lasso” multiple controls
with CTRL+DRAG), then click on the appropriate
alignment tool. All the alignment actions are
also available from the Align menu.

Display or hide the Align toolbox by choosing
Options ➤ Alignbox. Resize the Align toolbox
by placing the cursor on the border of the box.
When the cursor changes to a double headed
arrow, CLICK and DRAG.

Tip: For most alignment functions, the first control(s) selected
(blue handles) are aligned with the last control selected (red
handles). That is, the last control selected is the anchor
control. It doesn’t move, the others do.

Align Left Aligns the left borders of the selected controls
with the left border of the last control selected
(red handles).

Align Right Aligns the right borders of the selected controls
with the right border of the last control selected
(red handles).

Align Top Aligns the top borders of the selected controls
with the top border of the last control selected
(red handles).

Align Bottom Aligns the bottom borders of the selected
controls with the bottom border of the last
control selected (red handles).

Align Vertical Along a vertical axis, aligns the centers of the
selected controls with the center of the last
control selected (red handles).

Text Formatting
buttons—Bold,

Italic and
Underline.

Align Left Align Right Align Top Align Bottom

Align Ver tical Align Horizontal Spread Vertical Spread Horizontal

Same Size Same Height Center Vertical Center Horizontal

CHAPTER 8 USING THE WINDOW FORMATTER 209

Align Horizontal Along a horizontal axis, aligns the centers of the
selected controls with the center of the last
control selected (red handles).

Spread Vertical Equalizes the vertical spaces between the
selected controls.

Spread Horizontal Equalizes the horizontal spaces between the
selected controls.

Same Size Makes all selected controls the same height and
width as the last control selected (red handles).

Same Height Makes all selected controls the same height as
the last control selected (red handles).

Center Vertical As a group (relative positions of selected
controls don’t change), centers the selected
controls horizontally within the window.

Center Horizontal As a group (relative positions of selected
controls don’t change), centers the selected
controls vertically within the window.

Tip: Position the cursor over any tool and wait for half a second. A
tool tip appears telling you the type of alignment this tool will
accomplish.

Window Formatter Procedures

The Window Formatter lets you directly manipulate the window and the
controls inside it. The initial sample window, for example, contains
‘handles’ — the tiny boxes located at the corners and sides of the
window. By selecting a corner and dragging the mouse, you may resize
the sample window. The window the user sees when your application
runs is the same size as the window you create by dragging.

When the Window Formatter generates the source code for the window,
it places the data determining the size and position of the window (as
you specified by dragging the mouse) in the AT attribute of the statement
creating the window.

Similarly, the Window Formatter supplies the other attributes by
presenting you with options, check boxes and fields in which you
specify your preferences.

Here is the typical process for customizing a new window with the
Window Formatter :

210 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

1. Set the size of the window by dragging the handles so that the
sample window is the size you wish.

2. Set other window attributes by using the Window Properties
dialog.

RIGHT-CLICK the window and choose Properties from the popup
menu, or select the window and choose Edit ➤ Properties.

Other attributes include the window caption, whether the window is
resizeable, whether the window is scrollable, icons associated with
the window, messages, help files, and cursor types associated with
the window, and many others. See Using the Window Properties
Dialog below.

3. Close the Window Properties dialog.

4. Place controls in the window.

 See Placing Controls in a Window below. Also see the Setting
Control Properties chapter.

5. Preview the window by choosing Preview! from the action bar, then
make any adjustments necessary while still in the Window
Formatter .

6. Choose Exit! from the action bar to return to the Application
Generator or Text Editor.

Using the Window Properties Dialog

Use the Window Properties dialog to set all the properties, or attributes,
of a window. Properties include the window caption, whether the
window is resizeable, whether the window is scrollable, icons associated
with the window, messages, help files, and cursor types associated with
the window, and many others. In short, all the properties associated with
windows as opposed to properties associated with procedures, controls,
fields, etc.

To display the Window Properties dialog from the Window Formatter
you may:

❏ RIGHT-CLICK on the sample window and choose Properties from the
popup menu.

❏ Select the sample window and press ENTER.

❏ Select the sample window and choose Edit ➤ Properties from the
menu.

Additionally, each choice in the New Structure dialog leads to the
Window Properties dialog.

CHAPTER 8 USING THE WINDOW FORMATTER 211

General Properties Tab

Title To specify caption bar text for your window,
type a string constant in the Title field. The
caption bar displays the name of the window.

Tip: You may dynamically alter the caption bar text at runtime. For
example, you may place a file name variable on the title bar:
‘Notepad - FileName.TXT.’ To accomplish this, embed the
following code after the window is opened and before the
ACCEPT statement:
MyWindow{PROP:text} = ‘My Caption - ’ & FileNameVariable

If you create a system modal window, leave the
caption bar blank. The normal Windows style
for this type of window is to display the window
without a caption bar.

Label To specify the label for the window, type it in the
Label field. The label is used to refer to the
WINDOW in source code. In the following
example “CustEntry” is the label for the
CustEntry window:

CustEntry WINDOW... !defines CustEntry window
END
CODE
OPEN(CustEntry) !opens CustEntry window

The label may contain upper or lower case
letters, numbers, the underscore character, or a
colon. Spaces are forbidden. The first character
must be a letter or the underscore character.
Clarion reserved words may not serve as labels.

The Window
Properties dialog

displays the
attributes you add to

the WINDOW
structure.

212 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Frame Type To choose the frame type for your window, pick
a selection from the Frame Type drop down
list. The frame defines the borders of the
window. The selections are:

Single A single pixel frame which the
user cannot resize. Most
suitable for dialog boxes.

Double A thick frame, which the user
cannot resize. Use this type
frame for a system modal
window (without a caption bar),
or for a modal dialog box (with
a caption bar).

Resizeable A thick frame, which the user
may resize. Choose this for
application and MDI child
windows.

None A single pixel frame under
Windows 95, and no frame
under Windows 3.1. Most
suitable for dialog boxes. The
user cannot resize this frame.

Initial Size To specify the initial size and state of your
window, choose an option from the Initial Size
drop down list. The choices are:

Normal Display the window at the
default size. If you don’t specify
a default size, Clarion’s runtime
library will set it for you.

Maximized The window fills the entire
desktop, or the entire
application frame, depending on
whether the window is an
application window, or an MDI
child window.

CHAPTER 8 USING THE WINDOW FORMATTER 213

Iconized In Windows 3.1, the window
appears in an iconized state—as
a 32 by 32 pixel window at the
bottom of the desktop
(application window) or at the
inside bottom of the application
frame (MDI child window).

In Windows 95, the window
appears in an iconized state in
the Taskbar.

Tip: If you choose the iconized selection, be sure to specify a file
name in the Icon field. If not, your window may not receive a
Restore command on its system menu, which means it will
always remain iconized. Specifying a file name also adds a
minimize button to the window, allowing the user to iconize
the window again, after restoring it.

Extra Properties Tab

Icon To associate an icon with the window, specify
an icon file name (.ICO file) in this field. You
may type in a file name or press the ellipsis
button (...), then select an icon file name using
the standard Open File dialog.

You should always specify an icon for an
application window, and for an MDI child
window. Specifying an icon name automatically
places a minimize button on the caption bar of
your application or MDI child window.

214 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Palette To specify maximum color depth, fill in the
Palette field. This does not mean your end
user’s hardware will support the palette. Type
the total number of colors you wish to support.
For example, 24-bit color would be 16777215.
Leave this field zero to specify the default for
the end user’s system.

Timer To have the window receive Timer Event
messages from Windows, fill in the Timer field.
Specify the timer interval in hundredths of
seconds. For example, if you specify 100 in the
field, the window will automatically receive an
EVENT:Timer once every second. This might
be appropriate for adding a clock to a status bar.

Tip: Though Windows places limits on the number of active timers,
you can place as many timers on as many windows as you like
in your Clarion for Windows application. At runtime, your
application uses only one Windows timer.

Options To toggle the following various options on or
off, check or uncheck the corresponding boxes.

Immediate To generate an event each time
the end user moves or resizes
the window, check the
Immediate box. You are
responsible for the code that
executes for the event.

Status Bar To provide a message bar at the
bottom of your window, check
the Status Bar box. See Status
Widths below for information
on segmenting or zoning your
status bar.

Tip: A status bar in an application window is an excellent place to
provide feedback to your user. Clarion makes it easy to post
messages on the status bar advising the user of what your
application is doing. Increasing user feedback makes the user
more in control, more confident, and more efficient when
using your application.

Modal Window To specify a system modal window, check the
Modal Window box. This box is already
checked when you choose System Modal
Window from the New Structure dialog.

CHAPTER 8 USING THE WINDOW FORMATTER 215

A system modal window seizes control of the
entire system and prevents any other tasks—
even in other applications—from executing until
the window is closed.

Entry P atterns To add the MASK attribute to your window,
check the Entry Patterns box. This causes
Clarion to enforce the entry patterns for all the
fields in this window. For example, you may
have specified an entry pattern of @P###-##-
####P for a Social Security number field.
Checking the Entry P atterns box means the
entry pattern will be enforced on this window.

Tip: Entry Patterns are also known as Picture Tokens.

The entry patterns, or picture tokens, are
specified on the General Tab of the Entry
Properties dialog. See the Setting Control
Properties chapter (Setting Entry Box
Properties) for information on specifying entry
patterns. See the Language Reference for more
information on the MASK attribute.

System Menu To place a system menu in your window, check
the System Menu box. A System Menu is
always activated by the button, box, or icon in
the upper left corner of the window. Standard
System Menu choices include Restore,
Minimize, Maximize, and Close.

Every application frame should have a system
menu. For users on a system without a mouse,
the system menu provides the only means of
minimizing, maximizing or re-sizing the
application window.

Tip: Even if you decide the window should NOT have a system
menu when the application is complete, it’s good practice to
place a system menu on your application during development.
By DOUBLE-CLICKING the system menu, or choosing Close, you
can close your application if your normal exit procedure
doesn’t work.

A standard system menu.

216 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Tip: Even if not absolutely necessary, a system menu serves as an
added convenience for dialog boxes. Many users
automatically DOUBLE-CLICK on the system menu box to close
a dialog—since it always resides in a standard location, it is
often easier to find than a Cancel button.

Auto Display To add the AUTO attribute to
your window, check the Auto
Display box. This automatically
updates the contents of all
controls on the window on each
pass through the ACCEPT loop.

MDI Child To specify an MDI child
window, check the MDI Child
box. An MDI child window
cannot move outside the main
application window. A typical
use of an MDI window might
be to present a different
arrangement of the data in your
application’s database.

Maximize Box To place a maximize button in
your window, check the
Maximize Box box. In general,
you should place a maximize
button on application windows
and MDI child document
windows, not on dialog boxes.

3D Look To provide the gray window
background, and chiseled
control look for your window,
check the 3D Look box. This is
clearly a style consideration, but
will go a long way in giving
your application a professional
look.

The gray background is not
visible when you design your
window with the Window
Formatter . It is visible in
Preview! mode and when your
application is running.

CHAPTER 8 USING THE WINDOW FORMATTER 217

Toolbox To add the TOOLBOX attribute
to your window, check the
Toolbox box. The TOOLBOX
attribute makes your window
always stay “on top” of other
open windows.

Scroll Bars To toggle the following scroll bar options on or
off, check or clear the corresponding check
boxes.

Horizontal To add a horizontal scroll bar
to your window, check the
Horizontal box.

Vertical To add a vertical scroll bar to
your window, check the Vertical
box.

Status Widths To set the width of status bar zone(s), type a
value, or a list of values separated by commas,
in the Status Widths field. You must also check
the Status Bar box. See above. The values you
enter in this field provide the STATUS()
attribute parameters for your window. See the
Language Reference for more information on
the STATUS() attribute.

If your application has no status bar, or has only
one zone on the status bar, you may omit this
field.

Status bar zones are the areas within the status
bar marked off by the 3D shaded boxes. The
first zone on the left, by default, displays MSG
attribute text from the control with input focus.
This is useful for showing brief instructions or
other information to the user.

The values you enter represent the width, in
dialog units, of each zone. A dialog unit is 1/4
the width of the average character in the default
character set. Thus a value of 40 produces a
zone about 10 characters long. A value of 400
produces a zone about 100 characters long.

218 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

You may specify an expandable zone by typing
a negative number. A negative number creates a
zone with a minimum width, that expands as far
as the window size will allow.

Use property assignment syntax to place text in
any zone. To place a string in the second zone,
for example:

MyWindowLabel{PROP:StatusText,2} = ‘A String’

Tip: A multi-zone status bar can give your application a
professional look. You may display help text in zone one, and
when editing a record, the current record number in zone two,
for example.

Drop ID To add the DROPID attribute to your window,
type up to 16 comma delimited signatures in the
Drop ID field. The DROPID attribute indicates
this window is a valid target for “Drag and
Drop” operations. The signature is a string
constant that identifies which types of drag and
drop operations are valid for this window.

Drag and Drop capability means the end user
can select an item in one window or control,
hold down the left mouse button, “drag” the
item to another window or control, and release
the mouse button, “dropping” the item onto the
other window or control, which can then look at
the item that was “dropped” on it, and do
something with it.

Implementation of this capability requires that
the source control have a DRAGID attribute
with a signature that matches the target
window’s or control’s DROPID signature, and
that the procedures that drive each window have
appropriate source code to process the drag and
drop events. See the Language Reference for
more details and examples. Also see the Using
the List Box Formatter chapter, Adding Drag
and Drop Capability to the List Box section of
this book.

CHAPTER 8 USING THE WINDOW FORMATTER 219

Help Properties Tab

Cursor To specify the cursor appearance for the
window, choose a cursor from the drop down
list, or type in the name of a .CUR file. When
the user passes the cursor over the window, the
cursor takes the image defined in the .CUR file.
Controls within the window automatically
inherit the same cursor unless you override it.

Tip: See the Windows Design chapter for tips on when to use each
cursor.

Help ID To associate a Help ID with the window, fill in a
keyword or context string (preface the context
string with a tilde ~ character), in the Help ID
field. This fills in the HLP attribute for the
window.

Tip: You must author your help file using a word processor that
supports output to .RTF files (such as Microsoft Word for
Windows™). You must compile the help file with the Windows
Help Compiler, which is available from Microsoft.

When the user calls Windows Help while the
window is active, it opens to the associated
topic. Should you set a Help ID for individual
controls within the window, they override the
window’s Help ID while the control has focus.

220 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

When generating code, the Application
Generator calls the context string or keyword in
the .HLP file you specify in the Application
Properties dialog. See the Using the
Application Generator chapter for further
information.

Message To display a message in zone one of the status
bar when the window is active, type the
message in the Message field. This provides the
MSG attribute for the window. Messages may
also be specified for controls in the window.
When a control has focus, the control’s message
will be displayed instead of the window’s
message. See Status Bar and Status Widths
above for more information on the status bar.
See the Language Reference for more
information on the MSG attribute.

Position Properties Tab

Generally, you will want size your window by dragging its handles in the
Window Formatter . Handles are the tiny boxes that appear at the
corners and the sides of selected items. However, you may specify the
window size and its position from the Position Properties Tab.

Top Left Corner To specify the initial position (of the top left
corner) of your window, choose the desired X
and Y coordinates. The choices are:

The Position tab controls
the position and size of

the window. When you
choose default

positions, Windows
places your window at a

point dependent upon
where the last window

(even from another
application) was opened.

CHAPTER 8 USING THE WINDOW FORMATTER 221

Default This instructs Windows to set
the X and/or Y positions of the
upper left corner of the window
to a default value which will
depend on the user’s system and
on the number of other active
applications.

Tip: To give your application the “standard” look of other Windows
applications, use the Default setting wherever possible.

Center Places the window in the center
of the desktop. You may choose
horizontal centering, vertical
centering, or both. Adds the
CENTER attribute to the
WINDOW. See the Language
Reference for more information.

Fixed To set a specific position, mark
the Fixed choices for the X and
Y coordinates. This fixes the
position of the upper left corner
of the window. For the
APPLICATION frame this
position is relative to the
desktop, for an MDI child
window, this position is relative
to the APPLICATION frame’s
client area.

The measurement units for
these coordinates are dialog
units. Dialog units are a relative
measure based on the default
character set. A dialog unit is 1/
4 of the width of the average
character, and 1/8 of the height
of the average character. Thus,
Windows proportionally
repositions the window at
different screen resolutions.

Width To specify the width of your window, choose the
desired width value. The choices are:

Default This instructs Windows to set
the width of the window to a
default value which will depend
on the user’s system and on the
number of other active windows
and applications.

222 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Fixed To set a specific width, mark the
Fixed choice and specify a
value. This sets the width of the
window in dialog units.

Height To specify the height of your window, choose the
desired height value. The choices are the same
as for Width .

PLACING CONTROLS IN A WINDOW

This sections explains how to place a control in a window. The Setting
Control Properties chapter explains how to customize the controls you
place in your windows.

Controls Toolbox

The Controls Toolbox appears when you start the Window Formatter .
Hide or re-display the Controls toolbox by choosing Options ➤
Toolbox. All the controls in the toolbox are also available from the
Controls menu. The Controls Toolbox works exactly like a palette of
drawing tools, such as the toolbox in the Windows Paintbrush accessory.
To place a control:

1. CLICK on an icon in the toolbox. Each control has its own icon.

Position the cursor over any toolbox icon and wait for half a
second—a tool tip appears telling you the type of control that will be
created.

When you have selected a control tool, then pass the cursor over the
sample window, the cursor becomes a cross.

2. CLICK inside the window you wish to add the control to.

The upper left hand corner of the control is placed at the intersection
of the cursor cross when you CLICK the mouse.

3. If necessary, CLICK and drag on a control handle to resize the control.
CLICK and drag on the interior of the control to move the control.

No Tool String Prompt Entry Box

Text Box Group Box Option Box Button

Check Box Radio Button List Box Combo Box

Spin Box Progress Bar Image Region

Line Box Ellipse Pr operty Sheet

Tab Dictionary Field Custom Control Control Template

CHAPTER 8 USING THE WINDOW FORMATTER 223

THE WINDOW FORMATTER MENUS

Using the Popup Menu

Access the popup menu by RIGHT-CLICKING a window or a control. The
popup menu on the Window Formatter allows you to manipulate and
customize the window, and the controls on the window, depending on
whether the window or a control is selected.

❏ To select a window, place the cursor in the sample window title bar
and RIGHT-CLICK.

❏ To select a control, place the cursor on the control and RIGHT-CLICK.

❏ To select a property sheet control, place the cursor anywhere on the
sheet, but not on other controls, and not on a tab, then RIGHT-CLICK.

❏ To select a tab control, place the cursor on the corresponding tab and
RIGHT-CLICK.

Tip: All of the popup menu commands are also available on the
Window Formatter Edit menu.

Following is a description of the popup menu choices.

Properties To edit control or window properties, select a
control or window, and choose the Properties
command. See Using the Window Properties
Dialog above, or see the Setting Control
Properties chapter for more information. You
may also RIGHT-CLICK a control or window, and
select the Properties command from the
popup menu.

Embeds To add or edit embedded source associated with
a control or window, select it and choose the
Embeds command. See the Defining
Embedded Source Code section of the Using the
Application Generator chapter.

224 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Font To control the appearance of the text displayed
in a control or window, select the control or
window and choose the Font command.
Specify font, size, style, script, and color from
drop down list boxes. Toggle Strikeout and
Underline on and off with check boxes. The
Select Font dialog shows you a sample of the
text design you have chosen.

Key To specify a “hot” key for a control, select the
control and choose the Key command (the KEY
attribute is not applicable to windows, nor to
some controls). Use the Input Key dialog to
add the KEY attribute to your control. The KEY
attribute specifies a “hot” key, or key
combination, which, when pressed by the user,
will give immediate focus to the control, or, for
an action control such as a command button,
will initiate the action.

From the Input Key dialog, specify the hot key
or key combination by pressing the desired key
or key combination. The keys you pressed will
appear in the Key field, and will be supplied as
parameters to the KEY attribute for this control.

Setting text attributes
with the Select Font

dialog.

Adding a “hot” key for
CTRL+H

CHAPTER 8 USING THE WINDOW FORMATTER 225

Mouse clicks may be used as hot keys; however,
mouse clicks cannot be specified by clicking the
mouse. For mouse clicks, check the
corresponding check box(es). For example, to
give focus to a control when the user double-
clicks, check the Left Button box and the
Double Click box.

Optionally, add a modifier or modifiers to create
a multiple-key hot key sequence (for example,
CTRL+H, or ALT+RIGHT-CLICK), by checking Ctrl ,
Alt, or Shift , or any combination of the three.

The ESC, ENTER, and TAB keys cannot be specified
by pressing them. For these keys, press the
ellipsis (...) button and type “esc,” “enter,” or
“tab.”

The following controls receive focus from the
KEY attribute:

Combo Box
Entry Field
Group Box
List Box
Option Box
Prompt
Property Sheet
Spin Box
Tab
Text Field

The following controls both receive focus and
immediate execution from the KEY attribute:

Button
Check Box
Custom Control
Radio Button

Adding ESC to the hot
key sequence.

226 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

The KEY attribute is not applicable to the
following controls:

String
Progress Bar
Image
Region
Line
Box
Ellipse

Alert To specify an Alert key for a window or a
control, select the window or control and choose
the Alert command. Use the Alert Keys dialog
and the Input Key dialog to add the ALRT
attribute to your window or control. When the
ALRT attribute is set, the window generates an
EVENT:AlertKey if the user presses the key(s)
you specify in these dialogs. You may specify
more than one Alert key for a window or a
control.

See Key above for a discussion on how to
specify keys using the Input Key dialog.

Position To specify the position of a control or a window,
select it and choose the Position command.
See Position in the Using the Window Properties
Dialog section above for a discussion of
positioning windows.

To position controls, you will normally click
and drag the controls and use the Align tools, or
both. However, you may use the Position
command (and therefore the Position Tab of
the various control properties dialogs) to
position your controls. See the Setting Control
Properties chapter for more information. Also
see Grid Settings in the Using the Options Menu
section below.

List Box Format To specify the appearance and functionality of a
list box control, select the list box and choose
the List Box Format command. See the Using
the List Box Formatter chapter for more
information.

CHAPTER 8 USING THE WINDOW FORMATTER 227

Actions To specify the Actions associated with a control
or window, select it and choose the Actions
command. See the Setting Control Properties
chapter for more information.

Using the Edit Menu

The Edit menu on the Window Formatter allows you to manipulate and
customize the window, and the controls in the window, depending on
whether the window or a control is selected.

❏ To select a window, place the cursor in the sample window title bar
and CLICK.

❏ To select a control, place the cursor on the control and CLICK.

❏ To select a Property Sheet control, place the cursor anywhere on
the sheet, but not on other controls, and not on a tab, then CLICK.

❏ To select a Tab control, place the cursor on the corresponding tab
and CLICK.

Tip: Many of the Edit menu commands are also available on the
popup menu that you access by RIGHT-CLICKING on the control or
the window.

Following is a description of the Edit menu choices not described in the
Using the Popup Menu section above:

Undo To reverse the last editing action, choose the
Undo command. All Window Formatter
actions may be reversed, except deleting a
control.

Redo To redo the undone action, choose the Redo
command. Not all actions may be redone.

Delete To delete a control or window, select it and
choose the Delete command, or select it and
press the DELETE key.

Duplicate To place a copy of a control in the same
window, select the original and choose the
Duplicate command. The copy will appear next
to the original.

Tip: You may duplicate multiple controls by selecting multiple
controls before invoking the Duplicate command. Use
CTRL+CLICK to select multiple controls, or lasso multiple
controls using CTRL+CLICK+DRAG.

228 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Set Tab Order To visually set the tab key order for selected
controls, select a window, a Group Box, or an
Option Box, then choose the Set Tab Order
command. This opens the Ordering Type
dialog, which allows you to specify how the tab-
stop order is set: Automatically or Manually,
Horizontally or Vertically. See Set Control
Order below for an alternative method of setting
tab key order.

From the Ordering Type dialog, select the
Manual radio button, then press the OK button
to specify the tab-stop order by manually
CLICKING on the controls. A number appears on
each control, indicating the current order. CLICK

on the controls to change the order to the order
you wish.

Alternatively, from the Ordering Type dialog,
select the Automatic radio button, then choose
either the Horizontally or Vertically radio
button. Press the OK button to automatically set
the tab-stop order based on the position of the
controls. Horizontally numbers the topmost
controls first. Vertically numbers the leftmost
controls first.

Reselect the Set Tab Order command, or CLICK

on the sample window title bar to return to
normal editing mode.

Visually Setting Tab Order by
the numbers.

CHAPTER 8 USING THE WINDOW FORMATTER 229

Control Templates To add Control Templates to a control or
window, select the control or window and
choose the Control Templates command. This
opens the Edit Control Templates dialog,
which allows you to access the Prompts dialogs
of any control templates in the window. This is
equivalent to RIGHT-CLICKING a control template,
then choosing Actions from the popup menu.
See the Using Control, Code, and Extension
Templates chapter for more information.

Set Control Order To set the tab key order, and move controls
among overlapping tab controls, choose the Set
Control Order command. This opens the Order
Controls dialog, which displays all controls on
the window in a hierarchical list. Reorder the
controls, and their tab key order by selecting a
control and pressing the ↑↑↑↑↑ and ↓↓↓↓↓ buttons to
move the control up or down within the list.

Using the Control Menu

The Control menu lists the controls that appear in the Controls Toolbox.
Executing a command from the Control menu is identical to clicking on
the corresponding toolbox icon. The menu serves as a convenience.

For a list of toolbox controls, see the Window Formatter Tools section
above. Also see the Setting Control Properties chapter.

Using the Alignment Menu

The Alignment menu lists the same Alignment tools that appear in the
Align Toolbox. Executing a command from the Alignment menu is
identical to clicking on the corresponding toolbox icon. The menu serves
as a convenience.

Setting Tab Order using the
Order Controls dialog list.

230 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

For a list of Alignment tools, see the Window Formatter Tools section
above.

Using the Menu Menu

The Menu menu lets you add, change, or delete menus from your
window.

When you specify a menu for your application window, or for MDI child
windows, Clarion automatically merges the application window menu
with the MDI child menus, when an MDI child window has focus. This
saves you the trouble of enabling, disabling, inserting and replacing
various menu selections depending on which window has focus.

See the Creating Menus and Toolbars chapter for directions on how to
create menus and toolbars for your application.

Using the Toolbar Menu

The Toolbar menu lets you add or delete a toolbar for your window.

Specify a toolbar for your application window, or for MDI child windows.
Clarion automatically merges the application window toolbar with the MDI
child toolbar when an MDI child window has focus. This saves you the
trouble of enabling, disabling, inserting and replacing various tools
depending on which window has focus.

Please see the Creating Menus and Toolbars chapter for directions on
how to create menus and toolbars for your application.

Using the Populate Menu

The Populate Menu appears in the Window Formatter only when the
Application Generator is active. It places a field or memory variable in
the window, along with an appropriate control. For fields, the control
type depends on how the field is defined in the data dictionary.

When active, two new tool icons appear at the bottom of the Controls
toolbox, corresponding to the following commands:

Field Allows you to place an entry field tied to a field
or variable. When you CLICK in the window, the
File Schematic Definition dialog appears.
Select a field or variable, then CLICK in the
window.

CHAPTER 8 USING THE WINDOW FORMATTER 231

If you specified a prompt for the field when
creating the data dictionary, the first CLICK places
the prompt for the control. The second CLICK

places the control. If you pre-formatted the field,
on the Window tab of the Field Properties
dialog (for example, specifying a spin control),
the control you specified appears, rather than an
entry box.

Multiple Fields Allows you to place an entry field tied to a field
or variable. When you CLICK in the window, the
File Schematic Definition dialog appears.
Select a field or variable, then CLICK in the
window.

If you specified a prompt for the field when
creating the data dictionary, the first CLICK places
the prompt for the control. The second CLICK

places the control. If you pre-formatted the field,
on the Window tab of the Field Properties
dialog (for example, specifying a spin control),
the control you specified appears, rather than an
entry box.

After placing the first field, the File Schematic
Definition dialog appears again, ready for you
to place another field. When all fields are
placed, press the Cancel button to return to
normal editing.

Tip: When placing file fields and memory variables with these
commands, you can use the Embeds dialog to attach code to
the events generated by the controls.

Control Template Allows you to add a control template to the
window under construction. Select one from the
Select a Control Template dialog.

A control template adds a control or controls to
the window, plus the code to maintain them. For
example, the Browse Box control template
places a list box in the window, allows you to
choose the fields for the list, and adds all the
executable code for managing the list box
(loading it, scrolling it, etc.).

232 COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Once the control template is placed, you can
specify its properties and actions by RIGHT-
CLICKING and selecting Properties or Actions
from the popup menu. See the Using Control,
Code, and Extension Templates chapter for more
information.

Using the Options Menu

The Options menu allows you to display and hide the various Window
Formatter tools and toolboxes.

Show Toolbox To toggle the Controls toolbox display on and
off, choose the Show Toolbox command.
When designing large windows, it may be useful
to hide the toolbox, gaining additional room for
the window. You may still access all the control
tools by choosing them from the Control
menu.

Show Alignbox To toggle the Alignbox display on and off,
choose the Show Alignbox command. This is
a matter of individual preference. You may still
access all the alignment commands by choosing
them from the Alignment menu.

Show Propertybox To toggle the Propertybox display on and
off, choose the Show Propertybox command.

Show Fieldsbox To toggle the Fieldsbox display on and off,
choose the Show Fieldsbox command. This is
a matter of individual preference. You may still
access populate fields using the Controls
toolbox or the Populate menu.

Grid Settings To turn on grid snap, as well as setting the grid
values, choose the Grid Settings command.
Grid snap forces the upper left corner of new
controls to align with a dot grid in the window.
The end user does not see the grid at run time; it
is a design tool only. To turn grid snap on, check
the Snap to Grid box.

CHAPTER 8 USING THE WINDOW FORMATTER 233

Tip: Aligning the controls in your dialog boxes and windows will
give your application a more professional look. See the
appendix on Windows Design for specific suggestions on how
to align different types of controls.

To set the width and height spacing between the
grid dots, enter values in the Width and Height
fields in the Grid Settings dialog. The values are
in dialog units.

VBX Custom Control Registry To add a custom control
library to the registry, choose the VBX Custom
Control Registry command. Press the Add
button in the VBX Custom Control Registry
dialog. Then DOUBLE-CLICK on the .VBX file
name.

This enables the Window Formatter to place
controls from the library in your window (see
the Setting Control Properties chapter). To
remove a registration, press the Remove
button.

Using Preview!

To display an active window identical to the one that your user will
see, choose the Preview! command. The only
difference is, the window won’t contain live
data, and the command buttons won’t execute
commands. To exit Preview! mode, press ESC.

Tip: You should always test your windows and dialog boxes.
Though the Window Formatter is visual, it does not show you
how 3D shading will affect the ‘look’ of your window, nor does
it actually ‘hide’ a hidden control. Additionally, you may test
the tab order while in Preview! mode to verify the current
order makes sense.

The default grid settings.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

99

CCCCCREAREAREAREAREATINGTINGTINGTINGTING M M M M MENUSENUSENUSENUSENUS ANDANDANDANDAND T T T T TOOLBARSOOLBARSOOLBARSOOLBARSOOLBARS

Create menus and toolbars with the
Menu Editor, which you access
through the Window Formatter.

Clarion for Windows
provides standard toolbar
icons for common
functions, such as copy
and paste.

Clarion for Windows STD
IDs (Windows Standard
Functions) provide
automatic implemenation
of common Windows
commands such as Copy
and Paste. It even provides
an automatic window list
for MDI applications.

Easily place any type of
control on a toolbar.

The Menu Editor dialog
represents the MENUBAR
structure in a visual tree.
Add menu items at the
touch of a button.

CHAPTER 9 CREATING MENUS AND TOOLBARS

A menu is simply a list of the various actions your application may
perform. In Clarion, this list of actions (menu) is displayed using the
MENUBAR structure, MENU structures, and ITEMs. In this chapter, the
word menu is used generically to refer to the list of actions your
application may perform. The words MENUBAR, MENU, and ITEM
are used to refer to Clarion Language statements that define your
application’s menu.

This chapter will:

◆ Discuss dynamic menu and toolbar management for Multiple
Document Interface (MDI) applications.

◆ Show you how to call the Menu Editor and create a menu.

◆ Describe how to automatically implement standard Windows
behavior for commands such as Edit ➤ Copy by linking a Clarion
Standard ID (STD attribute) to an ITEM or MENU.

◆ Show you how to create a toolbar. Clarion even provides access to
icons for standard actions such as File ➤ Open , so that your
application will look more professional.

OVERVIEW: CREATING MDI MENUS

Multiple Document Interface (MDI) applications make special demands
upon a program. Often, the program may support a variety of document
windows, each of which has a slightly different set of commands from
which the user may select. See the Windows Design Issues appendix for
more information.

Merging Menus

Normally in an MDI application, the developer writes code to monitor
which window is active and to change the menus and toolbars to reflect
the options currently available to the user. Clarion does this
automatically by merging menus and toolbars according to preferences
you specify with the Menu Editor. However, accurate specification
requires some understanding and planning by the application developer.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Global Selections

On an APPLICATION frame, the MENUBAR defines the Global menu
selections for the program. These Global menu selections are generally
available on all MDI "child" windows. However, if the NOMERGE
attribute is present on the application’s MENUBAR, then there is no
Global menu, and the application’s menu is a Local menu displayed only
when no MDI child windows are open.

Local Selections

On an MDI child window, the MENUBAR defines Local menu
selections that are automatically merged with the Global menu selections
defined on the application’s MENUBAR. Both the Global and the Local
menu selections are available while the MDI "child" window has input
focus. Once the window loses focus, its Local menu selections are
removed from the Global menu selections. If the NOMERGE attribute is
specified on an MDI child window’s MENUBAR, the Local menu
overwrites and replaces the Global menu.

Non-MDI Windows

On a non-MDI window, the Local menu selections are never merged
with the Global menu selections. A MENUBAR on a non-MDI window
always appears in the window, and not on any application frame which
may have been previously opened.

Merging Order

Normally, when an MDI window’s menu (Local selections) is merged
into an application’s menu (Global selections), the Global menu
selections appear “first”, followed by the Local menu selections. First
means either toward the left or toward the top, depending on whether the
merged selection is displayed on the action bar (horizontal list) or in a
menu (vertical list).

 The merge process also considers whether any Local MENUs match any
Global MENUs. MENUs that have the same name and the same
MENUBAR level, match. When there are no matches, the menus merge
in the normal order. However, when MENUs match, a single menu
(vertical list) results with the Global selections appearing above the
Local selections. This new menu has all the attributes of the Global
MENU, such as, MSG, FIRST, etc. Within this merged menu, any
matching subMENUs are also merged into a single menu. Note that
ITEMS are not merged, even when they match.

CHAPTER 9 CREATING MENUS AND TOOLBARS

The normal merging order may be modified by using the Menu Editor’s
Position drop down list (see Specifying Menu Positions and Merging
Behavior below) to add FIRST or LAST attributes to individual MENUs
and ITEMs. The merge position priority is:

1. Global selections with FIRST attribute

2. Local selections with FIRST attribute

3. Global selections without FIRST or LAST attributes

4. Local selections without FIRST or LAST attributes

5. Global selections with LAST attribute

6. Local selections with LAST attribute

See the Language Reference for more information on these attributes.

Planning and Implementing the Menus

To create menus for MDI applications:

1. Create a master menu for the APPLICATION frame window.

Most likely, this will include a File menu and a Help menu, since
they contain functions that are available even when no document
windows are open.

Tip: Clarion’s Application Frame procedure template comes with a
predefined menu with many of the most common functions
already provided for you.

You will use the Window Formatter’s Menu Editor to create your
menus. Be sure to choose the FIRST attribute for the File MENU,
and the LAST attribute for the Help MENU from the Position drop
down list. This ensures that when Clarion merges this global menu
with local menus, File and Help will keep their correct positions.

2. Plan the additional menus for the child windows.

Can they all share the same menu titles? Do they share many of the
same commands? Ideally, most of the MENUs and ITEMs can be
active in all the child windows. If there are only a few commands
specific to certain windows, plan on disabling those MENUs and
ITEMs in the windows that don’t support them, and enabling them
in those that do.

3. Create the menu for the first child window.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Again, you will use the Window Formatter’s Menu Editor to create
the menu. Add any window-specific MENUs to the first child
window. That is, the window-specific MENUs the application frame
lacks-—such as Edit, Insert, etc.

Optionally, add a File MENU to the first child window. This is
necessary only if the child window needs an ITEM on the File
MENU that is not already included on the application’s File MENU.
For example, adding a Close command might be appropriate. If so,
add the File MENU to the first child window. Add the Close ITEM
to the File MENU.

Add the Window MENU to the first child window. Window MENUs
are standard for most windows programs. A typical Window MENU
includes the following ITEMs: Arrange Icons, Tile, Cascade, plus a
document (windows) list that displays all open child windows and
allows the user to switch between them. In many cases this entire
MENU, including the document list, can be implemented with
standard ID’s (StdID’s). See Creating Your Application’s Menu
below.

4. Exit the Menu Editor and save the menu.

5. Test the interaction of these first two menus.

Do they merge the way you planned? Are the correct selections
available for the window with focus? Make any adjustments with the
Menu Editor .

6. Repeat steps 3 through 6 for other child windows.

CALLING THE MENU EDITOR

To create a menu for your application, use the Menu Editor . You access
the Menu Editor through the Window Formatter .

Tip: You can also create a toolbar for your application using the
Window Formatter. You can place any type of control on your
toolbar, though you will probably use command buttons the
most.

This section provides detailed examples of using the Menu Editor to
create menus. From the Window Formatter , choose Menu ➤ New
Menu to create a new menu or choose Menu ➤ Menu Editor to edit an
existing menu.

CHAPTER 9 CREATING MENUS AND TOOLBARS

The Menu Editor dialog visually represents a Clarion MENUBAR data
structure. The menu tree (on the left hand side of the dialog) appears as
simplified Clarion language syntax, containing these Clarion keywords:

◆ A MENUBAR keyword at the top.

◆ A MENU statement or statements followed by a menu name, and a
corresponding END statement.

◆ An ITEM statement or statements followed by an item name.

Menu Editor command buttons allow you to add and delete MENUs and
ITEMs. You may also move MENUs and ITEMs within the MENUBAR
structure with the - and ̄ buttons.

The right hand side of the dialog allows you to specify the text of your
MENUs and ITEMs, the equate labels used to reference the MENUs and
ITEMs in executable code, and the actions that occur when the user
selects an ITEM.

Tip: When using the Application Generator, each ITEM you place
on a MENU or MENUBAR automatically adds an embed point
to the control event handling tree in the Embedded Source
dialog. This allows you to easily attach functionality to your
ITEMs.

The Menu Editor
displays the menu

under construction as
a hierarchical list.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

The following section provides a step by step procedure for creating a
menu. Following that are sections detailing the Menu Editor commands
and options, and a discussion of considerations to keep in mind when
creating MDI application menus.

CREATING YOUR APPLICATION’S MENU

Here are the steps for creating a menu starting from an empty window
within the Window Formatter .

1. Choose the Menu ➤ New Menu command.

The Menu Editor dialog appears. Only the MENUBAR statement is
present.

2. In the New group box, press the Menu button.

This adds the first MENU statement, its name, and its corresponding
END statement, ready for editing.

The ampersand within the MENU name signifies that the character
following the ampersand is the accelerator key. That is, the character
is underlined (for example: Menu1), and, when the user presses
ALT+accelerator key, the menu is displayed.

3. In the Menu Text field, type the text you want displayed for this
MENU.

For example, type &FILE, so the end user sees File .

4. In the Use Variable field, type a Field Equate Label.

A Field Equate Label has a leading question mark (?), and you
should make it descriptive. For example ?File shows this menu is to
manipulate a file. You can refer to the MENU within executable code
by its Field Equate Label.

5. In the New group box, press the Item button.

This inserts an ITEM between the MENU statement and its END
statement. Note that ITEMs are used to execute commands or
procedures, whereas MENUs are used to display a selection of other
MENUs or ITEMs.

6. In the Menu Text field, type the text you want to display for this
menu ITEM.

For example, type &OPEN, so the end user sees Open . The
ampersand within the ITEM name signifies the character following
the ampersand is the accelerator key. That is, the character is
underlined, and, when the user presses the accelerator key, the action
associated with the ITEM is executed.

CHAPTER 9 CREATING MENUS AND TOOLBARS

Note: A MENU accelerator key requires THE ALT key to take effect,
whereas an ITEM accelerator key does not require the ALT key,
but does require that the ITEM be currently displayed. See
Adding a Hot Key below for another method of accessing your
MENUs and ITEMs.

7. In the Use Variable field, type a Field Equate Label.

A Field Equate Label has a leading question mark (?), and you
should make it descriptive. For example ?FileOpen shows at a glance
the intended purpose of this ITEM: to open a file.

You refer to an ITEM within executable code by its Field Equate
Label. For example, within the ACCEPT loop of the generated
source code, the CASE FIELD() structure will refer to the equate
label ?FileOpen when testing to see if the user selected this ITEM.

8. In the Message field, type the MSG attribute contents.

This message text displays in the status bar (if enabled) when the
user highlights this MENU or ITEM.

9. In the Help ID field, type either a help keyword or a context string
present in a .HLP file.

If you fill in the Help ID for a MENU or an ITEM, when the user
highlights the MENU or ITEM and presses F1, the help file opens to
the referenced topic. If more than one topic matches a keyword, the
search dialog appears.

The Help ID field (HLP attribute) takes a string constant specifying
the key for accessing a specific topic in a Windows Help file. This
may be either a Help keyword or a context string.

A Help keyword is a word or phrase indexed so that the user may
search for it in the Help Search dialog.

Tip: When authoring a Windows Help file, you indicate a keyword
with the ‘K’ footnote. A Help context string is the arbitrary
string which uniquely identifies each topic page for the
Windows Help Compiler. When creating the Help file, the ‘#’
footnote marks a context string. These tasks are all done for
you by many third party help tools.

When referencing a context string in the Help ID field, you must
identify it with a leading tilde (~).

10. From the Actions Tab , choose Call a Procedure from the When
Pressed drop down list.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

The procedure you specify executes when the user selects this ITEM.
You may specify parameters to pass and standard file actions (insert,
change, delete, or select) if applicable, or you may initiate a new
thread. The procedure appears as a “ToDo” item in your Application
Tree (unless you named a procedure that already exists).

This is one way to add functionality to your ITEM. You may also
add functionality by choosing Run a Program from the drop down
list, by embedding source code, or by typing an STD ID in the STD
ID field. STD IDs give your application Standard Windows Behavior
(SWB) for common actions such as File/Open and Edit/Cut, Copy,
and Paste. See Implementing Standard Windows Commands below.

After following these steps, you have a single MENU called File ,
with a single ITEM called Open . To add other ITEMS to the
MENU, repeat steps 4 through 11. To add a second MENU, select
the END statement and press the Menu button. To add a subMENU,
select a MENU or ITEM statement and press the Menu button.

11. To finish the menu and return to the Window Formatter , press the
Close button.

OTHER MENU EDITOR FUNCTIONS

Additional buttons and check boxes allow you to specify execution of
standard windows actions, placement of menu separators, designation of
hot keys, default menu states, and menu merging preferences.

Implementing Standard Windows Commands - Std IDs

There are some menus and commands that you see in almost every
windows program. For example, Cut, Copy, and Paste. Clarion provides
an easy method for implementing these standard actions in your
application menus—with the Std ID field on the Menu Editor dialog.

Using the Actions tab to
specify a procedure to

call when a menu ITEM
is selected.

CHAPTER 9 CREATING MENUS AND TOOLBARS

To specify a standard action for your menu ITEM, enter one of the
equates listed below in the Std ID field. Clarion will automatically
implement the command using standard windows behavior; you do not
need any other support for it in your code. The standard equate labels
and their associated actions are also contained in the
C:\CW\LIBSRC\EQUATES.CLW file.

STD:PrintSetup Printer Options Dialog.

STD:Close Closes active window.

STD:Undo Reverses the last editing action.

STD:Cut Deletes selection, copies to clipboard.

STD:Copy Copies selection to clipboard.

STD:Paste Pastes clipboard contents at the insertion
point.

STD:Clear Deletes selection.

STD:TileWindow Arranges child windows edge to edge.

STD:TileHorizontal Arranges child windows edge to edge.

STD:TileVertical Arranges child windows edge to edge.

STD:CascadeWindow Arranges child windows so all title bars
are visible.

STD:ArrangeIcons Arranges iconized child windows.

STD:WindowList Adds child window names to menu.

STD:Help Opens .HLP file to the contents page.

STD:HelpIndex Opens .HLP file to the index.

STD:HelpOnHelp Opens Microsoft’s .HLP file for the
Windows Help system.

STD:HelpSearch Opens Microsoft’s Help Search utility for
the .HLP file.

Implementing Standard
Windows Behavior with

an STD ID.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Specifying Menu Positions and Merging Behavior

The Position drop down list allows you to specify MENU and ITEM
order priority when Clarion merges menus. The choices are:

Normal To allow normal ordering when merging menus,
choose Normal from the Position drop down
list. In normal merging, Global selections
precede Local selections. See Merging Menus
above.

First To force the selected MENU or ITEM to the
first position when merging menus, choose First
from the Position drop down list. This adds the
FIRST attribute to the MENU or ITEM
statement. See the Language Reference for more
information. Also, see Merging Menus above.

Last To force the menu or item to the last position
when merging menus, choose Last from the
Position drop down list. This adds the LAST
attribute to the MENU or ITEM statement. See
the Language Reference for more information.
Also, see Merging Menus above.

The following two Flags allow you to specify whether or not your menu
can be merged, and right justification of selections displayed on the
menubar:

Do Not Merge To tell Clarion never to merge this MENUBAR
with other MENUBARs, check the Do Not
Merge box. This is available only for the
MENUBAR. See the Language Reference for
more information on the NOMERGE attribute.

Right Justify To right justify the selected MENU, check the
Right Justify box. This is available only for
MENUs on the action bar. Nested MENUs
(subMENUs) cannot be right justified. Checking
this box displays the selected MENU, and all
MENUs after the selected MENU, at the far
right of the action bar.

CHAPTER 9 CREATING MENUS AND TOOLBARS

Adding a Hot Key

A hot key is very similar to an accelerator key. A hot key or hot key
combination allows the end user to immediately display a MENU, or
execute the action associated with an ITEM, without mouse clicking,
and without displaying the menu that contains the ITEM. Customarily,
hot keys take the form of CTRL + character, or CTRL + SHIFT + character.
To add a hot key:

1. Press the Hot Key button.

The Input Key dialog appears. Use this dialog to add the KEY
attribute to your MENU or ITEM. The KEY attribute specifies a
“hot” key or key combination.

2. From the Input Key dialog, specify the hot key or key combination
by pressing the desired key or keys.

The keys you pressed will appear in the Key field, and will be
supplied as the parameter to the KEY attribute for this menu item.

Mouse clicks may be used as hot keys; however, mouse clicks cannot
be specified by clicking the mouse. For mouse clicks, check the
corresponding check box(es). For example, to execute the Open
command when the user double-clicks, check the Left Button box
and the Double Click box.

The ESC, ENTER, and TAB keys may be used as hot keys, but they
cannot be specified by pressing them. For these keys, press the
ellipsis (...) button and type “esc,” “enter,” or “tab.”

3. Press the OK button to return to the Menu Editor .

Tip: You may want to add the hot key combination to the menu text
to signal its availability to the user. See the Windows Design
appendix for a list of common hot keys associated with
standard windows commands.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Other Menu Behavior - Disabling and Toggling

The following two Flags allow you to disable a selection, and to set up
an ITEM as toggle switch.

Disable Item To disable a MENU or ITEM (dim the text and
make it unavailable to the user), check the
Disable Item box. This adds the DISABLE
attribute to the MENU or ITEM statement.

Tip: The Disable box is handy when you incorporate modality into
a program—that is, when one type of child window does not
support the same commands another type does. For the type
that doesn’t support the command, disable the ITEM rather
than omitting it. This will avoid confusing the user with menu
ITEMs that disappear and reappear depending on which
window is active.

Toggle (on/off) Item To create an on/off toggle for a selected
ITEM, check the Toggle (on/off) Item box. The
ITEM should have a numeric variable in the
Use Variable field. The variable should be
declared using one of the data dialogs, or in
embedded source. See Use Variable above. The
Menu Editor adds the CHECK attribute to this
ITEM.

With the CHECK attribute, when the user
selects the ITEM for the first time, the ITEM is
“on,” the Use Variable’s value is one (1), and a
check mark appears beside the ITEM. When the
user selects the ITEM a second time, the ITEM
is “off,” the Use Variable’s value is zero (0) and
no check mark is displayed. You should add
source code to control the application’s behavior
depending on the state of the Use Variable.

Managing Your Menu

Separator Button To add a separator bar after the currently
highlighted MENU or ITEM, press the
Separator button .

Tip: Separator bars can provide the user with a visual cue that a
group of ITEMs on the menu perform related functions.

CHAPTER 9 CREATING MENUS AND TOOLBARS

Delete Button To delete the currently highlighted MENU or
ITEM, press the Delete button. If you delete a
MENU statement, all ITEMs and MENUs
within it, and its associated END statement are
also deleted.

↑↑↑↑↑ and ↓↓↓↓↓ Buttons To move the currently highlighted MENU or
ITEM up or down in the menu list, press the ↑↑↑↑↑
or ↓↓↓↓↓ button. When moving a MENU, all ITEMs
and MENUs within it, and its associated END
statement move also.

ADDING A TOOLBAR

You may add a toolbar to any window with a simple command in the
Window Formatter . You may place any control on a toolbar, but the
ones you will probably use the most are command buttons, check boxes,
radio buttons, and drop down list boxes. As with menus, Clarion will
automatically merge toolbars in certain situations.

Toolbar Merging

Global and Local Tools

The TOOLBAR structure declares the tools displayed for an
APPLICATION or WINDOW. On an APPLICATION, the TOOLBAR
defines the Global tools for the program. If the NOMERGE attribute is
specified on the APPLICATION’s TOOLBAR, the tools are local and are
displayed only when no MDI child windows are open; there are no
global tools. Global tools are active and available on all MDI child
windows unless an MDI child window’s TOOLBAR structure has the
NOMERGE attribute.

The Window Formatter’s
popup menu uses

Separators to group
related commands.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

MDI Windows

On an MDI window, the TOOLBAR defines tools that are automatically
merged with the Global toolbar. Both the Global and the window’s tools
are then active while the MDI “child” window has input focus. Once the
window loses focus, its specific tools are removed from the Global
toolbar. If the NOMERGE attribute is specified on an MDI window’s
TOOLBAR, the tools overwrite and replace the Global toolbar.

Non-MDI Windows

On a non-MDI WINDOW, the TOOLBAR is never merged with the
Global menu. A TOOLBAR on a non-MDI window always appears in
the window, not on any application which may have been previously
opened.

Merging Order

When an MDI window’s TOOLBAR is merged into an application’s
TOOLBAR, the global tools appear first, followed by the local tools.
The toolbars are merged so that the fields in the window’s toolbar begin
just right of the position specified by the value of the width parameter of
the application TOOLBAR’s AT attribute. The height of the displayed
toolbar is the maximum height of the “tallest” tool, whether global or
local. If any part of a control falls below the bottom, the height is
increased accordingly.

Note: To merge toolbars, the application’s toolbar AT width
must be less than the APPLICATION’s frame width.

Adding a Push Button

The following describes how to add a toolbar to a window. The starting
point is the Window Formatter , open to an empty window:

1. From the Toolbar menu, choose New Toolbar .

A rectangular area appears at the top of the window. This is the
toolbar. At runtime, it appears dark gray.

2. Optionally choose the Options ➤ Grid Settings, then check the
Snap to Grid box.

This makes sizing and placing the controls easier.

3. Press the Button icon (OK) in the Controls toolbox, then click
inside the new toolbar in the sample window.

A button control appears.

CHAPTER 9 CREATING MENUS AND TOOLBARS

4. Press the RIGHT-CLICK on the button and select Properties from the
popup menu, or choose Edit ➤ Properties.

The Button Properties dialog for the new button appears.

5. Delete the default text in the Parameter field.

This allows you to create a picture button without text.

6. From the Extra tab, choose an icon from the Icon drop down list, or
type the name of an icon file (*.ICO) of your own.

The icon list contains a number of default icons for such standard
actions as File/Open, or Cut, Copy, and Paste.

7. From the General tab, type a descriptive Equate Label in the Use
field.

For a File/Open button, for example, you might type ?OpenButton.
The Equate Label will appear in the Embedded Source dialog,
making it easy to identify where you want to add functionality

8. Press the OK button to close the Button Properties dialog.

9. Resize the button to the size you want by dragging its handles.

Handles are the tiny boxes that appear at the corners and sides of an
item.

Tip: For toolbar buttons, Clarion for Windows uses .ICO files that
are 32 x 32 pixels . Most toolbar buttons will be smaller—for
example, 16 x 18 pixels. By using these larger files, we can
create the “disabled” icon from the same file, rather than
requiring a separate file. When creating a custom .ICO file for
a toolbar button, place your the image in the center of the icon
file. Clarion automatically crops the icon image to fit the
button size.

Placing buttons on a
toolbar. After

choosing a standard
icon from the list, the

“Button 1” button will
display the

appropriate icon.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Adding a “Latched” Button

A latched button “stays depressed” when CLICKED, then returns to its
original state when CLICKED a second time. To place a latched button:

1. Press the Check Box icon in the Controls toolbox, then click inside
the new toolbar in the sample window.

The Select Field dialog appears.

2. Highlight Local Data, then press the Insert button.

The New Field Properties dialog appears.

3. In the Field Name field, type a name, then choose BYTE from the
data type drop down list.

The Check Box Proper ties dialog appears. A button created from a
check box control has two modes: on or off. When the check box is
‘on’ (it appears ‘pushed in’ to the user), and the value of its USE
variable is one. When ‘off,’ it is zero.

4. From the Extra tab, choose an icon from the Icon drop down list, or
type the name of an icon file (*.ICO) of your own.

5. Press the OK button.

The button is complete; you need only adjust its position by
dragging its center, if necessary.

Adding a Button Group

A button group provides the user with mutually exclusive choices. For
example, in a group of three buttons, only one can be “depressed.” If
button number two is currently “depressed,” push in button number one,
and button number two pops out. For example, a button group can
provide controls for left, right and center text justification—only one
option can be active at a time.

To create a button group:

1. CLICK on the Option Box icon in the Controls toolbox, then CLICK

inside the toolbar.

The Window Formatter places an Option Box on the toolbar. You
may resize it by dragging its handles. An Option Box—an OPTION
structure—must always surround radio button choices, however, this
Option Box will not appear on the toolbar, because you will hide it.

2. RIGHT-CLICK on the Option Box and choose Properties from the
popup menu.

The Option Properties dialog appears.

CHAPTER 9 CREATING MENUS AND TOOLBARS

3. Type JUSTIFICATION in the Use field.

The Use field takes the label of a variable. You must declare the
variable with the Global Data dialog, the Local Data dialog, or by
some other method. This variable will receive a value indicating
which button within the group the user selected. The variable may be
a string variable or a numeric variable. If it is a string, it will receive
a text value, either the text from the selected button, or an alternative
text value you specify. If it is a numeric, it will receive an integer
value corresponding to the selected button, that is, button 1, 2, or 3.

4. From the Extra tab, uncheck the Boxed box.

This hides the Option Box from the user. It appears in the Window
Formatter dialog, but will not appear at runtime.

5. Press the OK button.

6. CLICK on the Radio Button icon in the Controls toolbox, then CLICK

inside the Option Box.

The Application Generator places a Radio Button where you clicked
in the Option Box.

7. RIGHT-CLICK on the Radio Button and choose Properties from the
popup menu.

The Radio Button Properties dialog appears.

8. Clear the Parameter field.

Clearing this field will remove text from the button so we can add an
icon instead.

9. In the Value field, type Left.

When the user presses this button, the string “Left” is assigned to the
USE variable we specified above.

10. From the Extra tab, choose an icon from the Icon drop down list, or
type the name of an icon file (*.ICO) of your own.

11. Press the OK button.

The first button is complete; you need only adjust its position by
dragging its center.

12. Repeat steps 6 through 11 for the “center” and “right” buttons.

Preview Your Menus and Toolbars

To test the runtime appearance of your toolbars and menus:

1. Choose Preview! from the Window Formatter menu.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

This displays the window, including the toolbar and menus, as it
would to the user at runtime. Test the latching and radio features by
pushing the buttons. Press ESC when done previewing your window.

2. Choose Exit! from the Window Formatter menu to save your
window.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

1010

SSSSSETETETETETTINGTINGTINGTINGTING C C C C CONTROLONTROLONTROLONTROLONTROL P P P P PROPERROPERROPERROPERROPERTIESTIESTIESTIESTIES

When you place controls using the
Window Formatter, you must fill in
the various control Properties dialogs
to provide the functionality for the
controls.

To set the location of any
control, you can drag it
with the mouse in the
Window Formatter. For
more precise control, use
the Position dialog.

The Entry Properties dialog
controls the appearance
and functionality of the
normal entry boxes which
accept user entry.

Use .VBX custom control
libraries in your
application.

Set the font for any type of
control.

CHAPTER 10 SETTING CONTROL PROPERTIES

This chapter teaches you how to set control properties. It assumes you
understand how to use the Window Formatter to choose, place and size
controls (See the Using the Window Formatter chapter). It provides an
overview of the types of controls as they relate to data entry, discusses
the properties applicable to all controls, then covers each control type
individually. It also shows you how to associate the contents of a
variable with an entry or display control.

Some of the specific tasks covered in this chapter include:

◆ How to customize a button with text, picture, or both.

◆ How to specify radio button and check box properties, including
customizing them with a 3D look suitable for toolbars.

◆ How to create an entry control, and how to associate it with a
variable, which holds the data the user enters.

◆ How to specify spin box control properties, such as the increment
value when the user presses the increase or decrease buttons.

◆ How to specify group, sheet, and tab control properties, which
visually organize related controls in a window.

◆ How to format list box controls, including how to create multi-
column list boxes, and hierarchical lists.

◆ How to include graphic controls such as bitmaps, metafiles, lines,
boxes, and ellipses in a window.

◆ How to set properties for .VBX custom controls.

When using the Window Formatter from within the Application
Generator, any fields which accept user entry automatically open the
Select Field dialog, so that you can indicate a field or variable to
associate with the control. Once placed, you can access the control’s
Properties dialog from the Edit menu or from the popup menu.

OVERVIEW: TYPES OF CONTROLS

Controls are generally divided into three categories, User Interactive
Controls , Non-User Interactive Controls , and Custom Controls .

User Interactive Controls

User interactive controls are clicked on or typed into by the user.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

◆ Action controls—BUTTON—lead to an instantaneous result. This
might involve closing a dialog box and completing the operations
contained in it. Clarion also supports associating a continuous action
with a button. For the user, this means pressing the button and
holding it down is the same as clicking the button repeatedly.

◆ User Choice controls—RADIO, COMBO, SPIN and LIST—allow
the user to enter data by choosing from a group of possible
alternatives. No keyboard input is required.

◆ Entry controls—ENTRY and TEXT—allow data entry from the
keyboard. Clarion for Windows provides extensive options for
automatically validating user data entry.

Non-User Interactive Controls

Non-user interactive controls provide visual cues that help the user
understand and operate the interactive controls.

◆ Non-user interactive controls—PROMPT, GROUP, BOX, LINE,
SHEET, TAB etc.—don’t perform an action, but instead guide the
user to other controls. They can take the form of a group box, a tab, a
line, or a graphic image, all of which visually organize or emphasize
other controls.

Custom Controls

Custom controls are defined outside the Clarion Development
Environment and may be either interactive or non-interactive.

◆ Custom controls—.VBX controls—are ‘add-in’ controls from third
party vendors. These may perform a very wide variety of tasks.

SETTING COMMON CONTROL ATTRIBUTES

The attributes you add to a control determine how the control will look
and act. Different controls support different functions, and so require
different attributes. All Clarion controls allow you to set two common
attributes: USE and AT. Additionally, most controls allow you to set
KEY, ALRT, FONT, SKIP, HIDE, DISABLE, SCROLL, CURSOR,
HLP, MSG, and TIP attributes. This section will explain how to set these
common control attributes. Each attribute is discussed more fully in the
Language Reference.

CHAPTER 10 SETTING CONTROL PROPERTIES

Setting the USE Attribute

The compiler internally references each control by a number it assigns.
To make it easier for you to refer to the control in executable source code
statements, you may define a “field equate label” for each control, so
you can refer to the control by name. The USE attribute specifies this
name, which is called a field equate label. A field equate label is a valid
Clarion label prefixed by a question mark (?). We suggest using a
meaningful label for field equate labels, such as ?EmployeeImage.

For entry controls (controls that accept data), the USE attribute is
specified without the leading question mark (?). For example:
EmployeeImage. For entry controls, the USE attribute serves a dual
purpose. It not only supplies the field equate label for the control, it also
specifies the name of the variable that holds the data from the control.
This variable must be defined in the data dictionary, in one of the data
dialogs, or by hand-coding.

In source code, you refer to this control’s data item as EmployeeImage.
You refer to the control itself as ?EmployeeImage.

To set the USE attribute:

1. RIGHT-CLICK on the control, and choose Properties from the popup
menu.

This displays the General tab of the respective control properties
dialog, which allows you to specify the USE attribute for your
control.

2. In the Use field, for non-entry controls, type a descriptive, valid
Clarion label, prefixed by a question mark(?), otherwise, name the
variable the control updates (no question mark).

Setting the USE
attribute for your

control, so you can
refer to the control

by name in your
source code.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

If the control is an entry control (Entry Box, Option Box, Spin Box,
Text Box, List Box, Combo Box, Check Box, or Custom Control),
press the ellipsis (...) button to choose, or create, a data dictionary
field or memory variable from the Select Field dialog. Do not prefix
with a question mark (?). Remember, for entry controls, the USE
attribute not only supplies the field equate label for the control, it
also specifies the name of the variable that holds the data from the
control.

Note: Two or more entry controls may update the same variable.
However, they must still have unique field equate labels. In
this circumstance, the Window Formatter automatically
creates unique field equate labels by appending a number to
field equate labels that would otherwise be duplicated.

3. Press the OK button.

Tip: Field equate labels allow you to use executable statements
and Clarion’s property access syntax to modify the control
at runtime. For example, you can use the DISABLE
statement to “dim out” controls in situations when they
should be unavailable to the user:

DISABLE(?EmployeeImage)

Following is an alternative method for setting the USE attribute. This
method works best for non-entry controls, because no variable selection
or definition is required.

1. From the Window Formatter menu, choose Options ä Show
Propertybox .

This displays the Property toolbox, which allows you to specify the
USE attribute for your controls.

2. CLICK on the control you want to change.

An alternative for
setting the USE

attribute.

CHAPTER 10 SETTING CONTROL PROPERTIES

3. In the Property toolbox Use field, for non-entry controls, type a
descriptive, valid Clarion label, prefixed by a question mark(?),
otherwise, name the variable the control updates (no question mark).

If the control is an entry control (Entry Box, Option Box, Spin Box,
Text Box, List Box, Combo Box, Check Box, or Custom Control),
do not prefix with a question mark (?). Remember, for entry
controls, the USE attribute not only supplies the field equate label
for the control, it also specifies the name of the variable that holds
the data from the control. This variable must be defined in the data
dictionary, in one of the data dialogs, or by hand-coding.

Setting the AT Attribute

The Window Formatter allows you to visually set the position and size
of each control simply by dragging it wherever you want. You may also
specify position by manually typing coordinates in a dialog box. This
allows you to exactly line up a control, for example, halfway down a
dialog box. To set the AT attribute, which defines the control’s position:

1. RIGHT-CLICK on the control, and choose Position in the popup menu.

This displays the Position tab of the respective control properties
dialog, which allows you to specify the AT attribute for your control.

2. Specify coordinates for the top left corner of the control.

Type in an ‘X’ (horizontal) and ‘Y’ (vertical) coordinate. This places
the top left corner of the control relative to the top left corner of the
window. The unit of measurement for the coordinates is the dialog
unit. See Glossary for definition of dialog units. These provide a
relative measure based on the size of the character set currently in
use.

3. Specify Width and Height options.

The Width and
Height fields can

expand the control
to fill the window, or

can set a precise
size for the control.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Choose Default , and Clarion will automatically select a size based
on the display picture on an entry control. To turn off automatic re-
sizing, choose Fixed and type in ‘X’ and ‘Y’ values for the control.

Tip: For IMAGE controls, Default displays the picture at the size
it was created.

You may also specify that the control fills the window by choosing
the Full options. This adds the FULL attribute to the control. See the
Language Reference.

Tip: You can provide your users a full window text editor for
MEMO fields. Create a window and place a TEXT control in it.
Optionally change the cursor to an I-Beam, and set the
Width and Height of the TEXT control to Full.

Setting the KEY Attribute

The KEY attribute applies to any control which may receive focus
(Combo Box, Entry Box, Group Box, List Box, Option Box, Prompt,
Property Sheet, Spin Box, Tab, Text Field, Button, Check Box, Custom
Control, and Radio Button). It specifies a hot key which will give
immediate focus to the control. For an action control, such as a
command button, the hot key initiates the action. See the Language
Reference for more information.

To set the KEY attribute:

1. RIGHT-CLICK on the control, and choose Key in the popup menu.

This displays the Input Key dialog, which allows you to specify the
KEY attribute for your control.

2. Press the desired key or key combination.

The key or key combination you press appears in the Key field, and
is used as the parameter to the KEY attribute for this control.
Alternatively, press a character or function (F1, F2, etc.) key and
check a combination of the Ctrl, Shift, or Alt boxes to specify a hot
key combination.

The control will
receive focus when

the user presses
CTRL+H

CHAPTER 10 SETTING CONTROL PROPERTIES

Mouse clicks may be used as hot keys; however, mouse clicks cannot
be specified by clicking the mouse. For mouse clicks, check the
corresponding box(es). For example, to give focus to a control when
the user ALT+DOUBLE-CLICKS, check the Alt box, the Left Button box,
and the Double Click box.

The ESC, ENTER, and TAB keys cannot be specified by simply pressing
them, because these keys are standard Windows navigation keys. For
these keys, press the ellipsis (...) button and type “esc,” “enter,” or
“tab.”

3. Press the OK button.

Tip: Avoid using ALT plus letter combinations as hot keys. These
combinations should be reserved for menu accelerator
keys.

Setting the ALRT Attribute

The ALRT attribute applies to any control which may receive focus. It
specifies an alert key which is enabled when the control has focus. When
the user presses an alerted key, it generates an EVENT:AlertKey. This
allows you to execute an action while the user is still in the entry field.
For example, you may set an ALRT to display additional information to
the user upon a function key press. See the Language Reference for more
information.

To set the ALRT attribute:

1. RIGHT-CLICK on the control, and choose Alert in the popup menu.

This displays the Alert Keys dialog, which manages the ALRT
attributes for your control. You may set as many alert keys as you
like for a control.

2. Press the Add button.

This displays the Insert Key dialog, which allows you to specify the
ALRT attribute for your control. This is the same dialog used to
specify the KEY attribute. See Key above for information on how to
use this dialog.

3. Press the OK button.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Setting the FONT Attribute

You may specify the appearance of the text displayed on a control. Select
typeface, size, color, style, and script from standard drop down lists.
Choose strikeout and underline effects too. See the Language Reference
for more information.

To set the FONT attribute:

1. RIGHT-CLICK on the control and choose Font in the popup menu.

This displays the Select Font dialog.

2. Select typeface, size, color, style, and script from standard drop
down lists.

 The dialog displays a sample of the text design you have chosen.

4. Check the Strikeout or Underline boxes.

5. Press the OK button.

Tip: Be sure the font you pick is present on the user’s system. If
not, Windows will try to substitute an equivalent font;
however, since you have no control over the substitution,
you cannot be sure of the result. The TrueType fonts that
Microsoft ships with Windows 3.1 are: Arial, Courier New,
Symbol, Times New Roman, and Wingdings. In addition to
these, Windows 95 ships with Algerian, Army, Braggadocio,
Brush Script, Colonna MT, Desdemona, Impact, Matura MT,
MS LineDraw, MT Extra, Playbill, and Zingbats. These fonts
will be present on many systems.

Following is an alternative method for setting the FONT attribute:

1. From the Window Formatter menu, choose Options ➤ Show
Propertybox .

CHAPTER 10 SETTING CONTROL PROPERTIES

This displays the Property toolbox, which allows you to specify the
FONT attribute for your controls.

2. CLICK on the control you want to change.

3. In the Property toolbox, select font typeface and size from standard
drop down lists.

4. In the Property toolbox, select font style with standard bold, italic,
and underline buttons.

Setting Control Modes

The General tab of the various control properties dialogs allows you to
set four attributes that control the “mode” (appearance, disappearance,
and availability) of your window controls. To set the control’s mode:

1. RIGHT-CLICK on the control, and choose Properties in the popup
menu.

This displays the Properties dialog for the selected control.

2. Select the General tab.

This displays the General tab which contains the Mode check
boxes.

Setting control font
with the Pr operty

toolbox.

Setting control
modes.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

3. Check any combination of the Mode boxes.

The choices and their effects are:

Skip Instructs the Window Formatter to omit the
control from the Tab Order (the order in which
controls get input focus as the user presses the
TAB key). When the user TABS from field to field
in the dialog box, Windows will not give the
control focus. This is useful for seldom-used
controls, because the user can still access the
control by CLICKING on it. The Window
Formatter places the SKIP attribute on the
control (see the Language Reference).

Disable Disables (or dims) the control when your
program initially displays it, so it is unavailable
to the user. The Window Formatter places the
DISABLE attribute on the control. You can use
the ENABLE statement to allow the user to
access the control (see the Language Reference).

Hide Makes the control invisible at the time Windows
would initially display it. Windows actually
creates the control — it just doesn’t display it on
screen. The Window Formatter places the
HIDE attribute on the control. You can use the
UNHIDE statement to display the control (see
the Language Reference).

Scroll Specifies whether the control should remain in
the window when the user scrolls the window.
By default, (unchecked), the control remains in
the window. Check the Scroll box to create a
control that can be “scrolled off” the window.
The Window Formatter places the SCROLL
attribute on the control (see the Language
Reference).

4. Press the OK button.

Setting Help Attributes

The Help tab of the various control properties dialogs allows you to set
four attributes that supply information to the user about the control.

1. RIGHT-CLICK on the control, and choose Properties in the popup
menu.

This displays the Properties dialog for the selected control.

CHAPTER 10 SETTING CONTROL PROPERTIES

2. Select the Help tab.

This displays the Help tab which contains cursor, help, and message
entry boxes.

3. Optionally fill in any of the four entry fields.

The fields and their effects are:

Cursor Allows you to specify an alternate shape for the
cursor when the user passes it over the control.
The Cursor drop down list provides standard
cursor choices such as I-Beam and Crosshair .
To select an external cursor file (whose
extension must be .CUR), choose Select File...
from the drop down list, then pick the file using
the standard file dialog. The Window Formatter
places the CURSOR attribute on the control (see
the Language Reference).

Tip: The I-Beam, which signals text entry, is an excellent choice
for the active cursor for an entry or text control.

Help ID Sets the HLP attribute for a control (see the
Language Reference). When the control has
focus and the user presses F1, the Windows Help
file opens to the topic referenced by the HLP
attribute. In the Help ID field, type either a help
keyword or a help context string present in a
.HLP file.

A Help keyword is a word or phrase indexed so
the user may search for it in the Help Search
dialog. If more than one topic matches a
keyword, the search dialog appears.

Setting cursor, help,
and message

attributes.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

A Help context string is the arbitrary string
which uniquely identifies each topic page for the
Windows Help Compiler. A help context string
must be prefixed with a tilde (~).

Tip: When authoring a Windows Help file, you indicate a keyword
with the ‘K’ footnote. A Help context string is the arbitrary
string which uniquely identifies each topic page for the
Windows Help Compiler. When creating the Help file, the ‘#’
footnote marks a context string. These tasks are all done for
you by many third party help tools.

Message Sets the MSG attribute for the control (see the
Language Reference). The MSG attribute
specifies text to display in the first zone of the
status bar when the control has focus. In the
Message field, type the text to display in the
status bar.

Tip Sets the TIP attribute for the control (see the
Language Reference). TIP displays text in a
small box near the cursor when the cursor is idle
on the control for a specified period. The default
period is half a second. This technique is also
known as “Balloon Help.” In the Tip field, type
the text to display in the tip box.

USER INTERACTIVE CONTROLS

Setting Button Properties

A BUTTON is a control that performs an action when the user presses it.
In addition to the common control attributes described above, the
Window Formatter allows you to set the following button properties:

◆ The Button text.

◆ The Button icon or picture.

◆ The action to take When Pressed.

◆ The STD ID specifying a standard windows action for the button to
take.

◆ Whether the button’s action is the default action.

CHAPTER 10 SETTING CONTROL PROPERTIES

◆ The Drop ID specifying drag and drop operations for which the
button is a valid target.

By convention, a button is a rectangular area containing text, picture, or
both. When the user presses (CLICKS on) the button, it executes the
command described by the text or picture.

To specify button properties, RIGHT-CLICK the button control and choose
Properties from the popup menu. The Button Properties dialog
appears. This dialog helps you to specify the attributes for the BUTTON
statement.

General Tab

1. In the Parameter field, type the text that you wish to appear on the
button.

The text in the Parameter field is a string constant. An ampersand
(&) within the text means the next character is the accelerator key for
the button. The character is underlined and when the user presses ALT

+ the corresponding key, the button’s action initiates. Button text
may also be specified in the Caption field of the Property Toolbox.

Tip: Microsoft recommends you do not place an accelerator key
on buttons labeled ‘OK,’ or ‘Cancel.’

 2. In the Use field, type a field equate label.

A field equate label is a valid Clarion label, prefixed with a question
mark (?). Use the field equate label to refer to the button in program
statements. See Setting the USE Attribute above.

 3. Mode options: see Setting the Mode Attributes above.

Creating an OK
button.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Extra Tab

 4. In the Icon field, optionally select a standard icon from the drop
down list.

This displays a small bitmap on the button face in addition to any
button text. To select a standard icon, choose one of the named items
in the drop down list. To select an icon file (extension .ICO), choose
Select File... from the drop down list, then pick the file using the
standard open file dialog.

Tip: An icon and text gives a button with both. The text appears
below the icon picture.

5. Check the appropriate Options boxes.

There are three button options which you may toggle on or off
independently.

Immediate (the IMM attribute) allows you to create a button
control which repeats the executable action
continuously, for as long as the user holds the
button down. Normally, buttons generate an
event only after the user presses and releases the
mouse.

Required (the REQ attribute) specifies that, when pressed,
your program automatically checks that all
ENTRY controls with the REQ attribute are
neither blank nor zero. A button with this
attribute is a ‘required fields check’ button.
Specify this type of button when a window also
contains an ENTRY or TEXT control field with
the REQ attribute (or else use the
INCOMPLETE function to test the ENTRY
controls). When the user presses a button with
the REQ attribute and an ENTRY field is blank
or zero, the first required control which is blank
or zero receives focus.

A button that
performs a standard

windows action.

CHAPTER 10 SETTING CONTROL PROPERTIES

Default Button (the DEFAULT attribute), ‘presses’ the button
when the user presses the ENTER key. A heavy
border appears around the button to signal the
default button to the user. In general, place the
DEFAULT attribute on the button that represents
the most likely action the user will take. Place
only one default button in a window.

6. In the STD ID field, optionally select a standard windows action
from the drop down list.

This is one way to tell your button what action to take. There are
some actions you see in almost every windows program. For
example, Cut, Copy, and Paste. Clarion provides an easy method for
implementing these standard actions in your application—with the
STD ID field.

Clarion will automatically execute any of the standard actions from
the drop down list using standard behavior; you do not need any
other support for it in your code. The STD ID equate labels and their
associated actions are in the C:\CW\LIBSRC\EQUATES.CLW file.

Note: You may not combine a procedure or program call with an
STD ID, because a control with an STD ID does not generate
an ACCEPT event when the user activates the control.

7. In the Drop ID field, optionally type up to sixteen (16) comma
delimited signatures.

The Window Formatter adds the DROPID attribute to your button.
The DROPID indicates this button is a valid target for drag and drop
operations. The signature is a string constant that identifies which
types of drag and drop operations are valid for the button.

Drag and drop capability means the user can select an item in one
window or control, hold down the left mouse button, drag the item to
another window or control, and release the mouse button, dropping
the item onto the other window or control, which can then look at
the item that was dropped, and do something with it.

Implementation of this capability requires that the source control
have a DRAGID attribute with a signature that matches the target’s
DROPID signature, and that the procedures that drive each window
have appropriate source code to process the drag and drop events.
See the Language Reference for more details and examples. Also see
the Using the List Box Formatter chapter, Adding Drag and Drop
Capability to the List Box.

Help Tab

See Setting Common Control Attributes above.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Position Tab

See Setting the AT Attribute above.

Actions Tab

The Actions tab prompts are all from the templates, in other words, the
prompts you see here vary with the template used to create the control.
Following are the standard action prompts for all button controls. See the
Using Control, Code, and Extension Templates chapter for more
information. Also see the Using Control, Code, and Extension Templates
chapter for more information.

8. From the When Pressed drop down list, choose Call a Procedure ,
Run a Program , or No Special Action .

The procedure or program you specify executes when the user
pushes the button. The choices are:

Call a Procedure You must specify the Procedure Name , and
whether the procedure will Initiate a Thread .

Procedure Name From the Procedure Name drop down list,
choose and existing procedure name, or type a
new procedure name. A new procedure appears
as a “ToDo” item in your Application Tree.

Initiate a Thread Optionally check the Initiate a Thread box. If
the procedure initiates a thread, specify the
Thread Stack size. Clarion uses the START
function to initiate a new execution thread. If the
procedure initiates a thread, you cannot specify
Parameters or Requested File Action . If the
procedure does not initiate a thread, you can
specify Parameters , Requested File Action ,
or both.

Adding functionality
to your button.

CHAPTER 10 SETTING CONTROL PROPERTIES

Tip: A BUTTON on an application frame toolbar that calls an MDI
child procedure must initiate a thread.

Thread Stack Accept the default value in the Thread Stack
spin box unless you have extraordinary program
requirements. To change the value, type in a new
value or click on the spin box arrows.

Parameters In the Parameters field, optionally type a list of
variables or data structures passed to the
procedure.

Requested File Action
From the Requested File Action drop down
list, optionally select None, Insert, Change,
Delete , or Select . The default selection is
None . The Global Request variable gets the
selected value. The called procedure can then
check the value of the Global Request variable
and perform the requested file action.

Run a Program You must specify the Program Name , and
optionally, any parameters.

Program Name In the Program Name field, type the program
name. The program must reside in a .DLL or
.LIB defined in your application’s project (.PRJ)
file.

Parameters In the Parameters field, optionally type a list
of values that are passed to the program.

No Special Action Choose this option if you are providing your
button’s functionality with another method, such
as embedded source, or an STD ID (see Extra
Tab above).

Note: You may combine a procedure or program call with
embedded source, but not with an STD ID.

9. Optionally press the Files button to access the file schematic for this
procedure.

10. Optionally press the Embeds button to embed source code at points
surrounding the event handling for this button only.

11. Press the OK button to return to the Window Formatter .

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Choice Controls

Choice controls allow user input without keyboard entry. They create
streamlined user entry, as it is usually faster to pick an item from a list
than to type in a name of an item you may not remember. Choice
controls include radio buttons, check boxes, list boxes, combo boxes,
and spin boxes.

◆ Use choice controls to force the user to choose only one of a group
of mutually exclusive selections.

◆ Use choice controls to create special toolbar button effects, such as
“latched” buttons that stay depressed until pressed again, or groups
of radio buttons where only one button can be selected at a time. See
the Creating Menus and Toolbars chapter of this book.

◆ Clarion also allows you to easily incorporate multiple selections
from lists. The List Box Formatter allows you to design simple list
boxes, or multi-column, multi-selection list box controls.

Setting Radio Button Properties

A Radio Button, also called an option button, provides the user a set of
mutually exclusive choices. By default, a filled-in circle represents the
current selection.

An option box—an OPTION structure—must always surround the radio
button choices. Therefore, in order to set radio button properties, you
must also set properties for the option box. The Window Formatter
automatically prompts you to create an option box if you try to place a
radio button outside an option box. The option box appears at run time
as a rectangle with a caption in the top border, and radio buttons inside.

When the user selects a radio button, the OPTION’s USE variable
receives a value indicating which button was selected: the parameter text
of the selected button, the button number, or another value that you
specify. Your program can then take appropriate action based on the
OPTION’s USE variable value.

To place a radio button and an associated option box, activate the Radio
Button tool, and CLICK in the sample window. The Window Formatter
automatically prompts you to create an option box. CLICK on Yes. An
option box and one radio button appear.

To set option box properties, RIGHT-CLICK the option box and select
Properties from the popup menu; the Option Properties dialog
appears.

CHAPTER 10 SETTING CONTROL PROPERTIES

General Tab (Option Box)

1. In the Parameter field, type the Option Box label.

The Parameter field requires a string constant containing the prompt
for the group of controls. This string appears at run time in the top
border of the option box. An ampersand (&) within the text means
the next character is the accelerator key for the control. The character
is underlined, and when the user presses ALT + the corresponding
key, the first radio button receives focus. This text may also be
specified in the Caption field of the Property Toolbox.

Tip: Though the OPTION structure must be present, it does not
have to appear on screen. You may hide it from the user by
un-checking the ‘Boxed’ box on the ‘Extra’ tab of this dialog.

2. In the Use field, type the label of a variable.

The Use field (the USE attribute) takes the label of a variable. When
the user selects a radio button, the OPTION’s USE variable receives
a value indicating which radio button is selected. When the USE
variable is a string data type, it receives either the parameter text of
the selected button, or another string value that you specify (see
General Tab below). When the USE variable is a numeric data type,
it receives the button number.

3. Check any combination of the Mode boxes.

See Setting the Mode Attributes above.

Extra Tab (Option Box)

Setting the Option
Proper ties dialog for

a group of mutually
exclusive radio

buttons.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

4. Optionally, uncheck the Boxed box to hide the option box from the
user at run time.

This produces a slightly different effect than the HIDE attribute. The
HIDE attribute hides the option box and the controls inside the box.
Unchecking the Boxed box hides the option box and its caption, but
does not hide the controls inside.

5. In the Drop ID field, optionally type up to sixteen (16) comma
delimited signatures.

The Window Formatter adds the DROPID attribute to your control.
The DROPID indicates this control is a valid target for drag and
drop operations. The signature is a string constant that identifies
which types of drag and drop operations are valid for the button.

Drag and drop capability means the user can select an item in one
window or control, hold down the left mouse button, drag the item to
another window or control, and release the mouse button, dropping
the item onto the other window or control, which can then look at
the item that was dropped, and do something with it.

Implementation of this capability requires that the source control
have a DRAGID attribute with a signature that matches the target’s
DROPID signature, and that the procedures that drive each window
have appropriate source code to process the drag and drop events.
See the Language Reference for more details and examples. Also see
the Using the List Box Formatter chapter, Adding Drag and Drop
Capability to the List Box.

Help Tab (Option Box)

See Setting Common Control Attributes above.

Position Tab (Option Box)

See Setting the AT Attribute above.

6. Press the OK button to finish setting attributes for the OPTION box.

The OPTION box appears in the sample window. If you un-checked
the Boxed option, it will be visible in layout mode, but will become
invisible in Preview! mode.

Now that you have completed the option box properties, you should set
the radio button properties; the Radio Button Properties dialog
appears.

CHAPTER 10 SETTING CONTROL PROPERTIES

General Tab (Radio Button)

7. In the Parameter field, type the Radio Button text.

The Parameter field requires a string constant containing the prompt
for the radio button. An ampersand (&) within the text means the
next character is the accelerator key for the control. The character is
underlined, and when the user presses ALT + the corresponding key,
the radio button receives focus. This text may also be specified in the
Caption field of the Property Toolbox.

 8. In the Use field, type a field equate label.

A field equate label is a valid Clarion label, prefixed with a question
mark (?). Use the field equate label to refer to the radio button in
program statements. See Setting the USE Attribute above.

9. Type a value in the Value field.

When the user selects a radio button, the OPTION’s USE variable
receives the value that you specify here. The value you enter should
match the data type of the OPTION’s USE variable.

If you leave the Value field blank, the OPTION’s USE variable
receives either the string found in the Parameter field, or the button
number, depending on the data type of the OPTION’s USE variable.

The button number corresponds to the button’s position within the
option box. From the Window Formatter choose Edit ➤ Order
Control dialog to see the button’s tab order position within the
option box.

10. From the Justification drop down list, choose Left Justification,
Right Justification , or Default .

Left Justification arranges the button (or icon) to the left of the
parameter text. Right Justification arranges the button (or icon) to
the right of the parameter text. Default arranges the button according
to any applicable settings in the data dictionary.

11. Check any combination of the Mode boxes.

See Setting the Mode Attributes above.

A radio b utton
whose text will say

“Radio 1.”

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Extra Tab (Radio Button)

12. From the Icon drop down list, optionally select a standard icon, or
select a custom icon file.

Adding an icon to a radio button makes the radio button look like a
command button.

Tip: When you require a set of buttons for the toolbar, only one
of which can be active at a time, use radio buttons with the
ICON attribute filled in. See the Creating Menus and Toolbars
chapter for details.

To select a standard icon, choose one of the named items in the drop
down list. To select an icon file (whose extension must be .ICO),
choose Select File... from the drop down list, then pick the file
using the standard open file dialog.

Tip: If you add an icon and text, you get a radio button with both!
Make the resulting button large enough to display both.

13. In the Drop ID field, optionally type up to sixteen (16) comma
delimited signatures.

The Window Formatter adds the DROPID attribute to your control.
The DROPID indicates this control is a valid target for drag and
drop operations. The signature is a string constant that identifies
which types of drag and drop operations are valid for the button.

Drag and drop capability means the user can select an item in one
window or control, hold down the left mouse button, drag the item to
another window or control, and release the mouse button, dropping
the item onto the other window or control, which can then look at
the item that was dropped, and do something with it.

Implementation of this capability requires that the source control
have a DRAGID attribute with a signature that matches the target’s
DROPID signature, and that the procedures that drive each window
have appropriate source code to process the drag and drop events.
See the Language Reference for more details and examples. Also see
the Using the List Box Formatter chapter, Adding Drag and Drop
Capability to the List Box.

Choosing a Radio
Button Icon.

CHAPTER 10 SETTING CONTROL PROPERTIES

Help Tab (Radio Button)

See Setting Common Control Attributes above.

Position Tab (Radio Button)

See Setting the AT Attribute above.

14. Optionally add additional radio buttons by placing more RADIO’s
inside the OPTION structure.

Tip: To create professional looking radio button groups, turn the
Grid control on and use the Alignment tools. Grid Settings
appears on the Window Formatter’s Options menu. This will
allow you to easily line up your radio buttons.

Setting Check Box Properties

A check box manages a variable that the user may turn on or off.
Activate the Check Box tool, or choose Check Box from the Control
menu, then click in the sample window. The Window Formatter
automatically opens the Select Field dialog, so that you can choose or
create a data dictionary field or memory variable to associate with the
check box.

Tip: Use a BYTE data type variable with your check boxes to
avoid any unnecessary data type conversions.

Once placed, RIGHT-CLICK the check box and select Properties from the
popup menu; the Check Box Proper ties dialog appears.

General Tab

1. In the Parameter field, type the text that you wish to appear on the
check box.

The Check Box
Properties dialog.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

The text in the Parameter field is a string constant. An ampersand
(&) within the text means the next character is the accelerator key for
the check box. The character is underlined and when the user presses
ALT + the corresponding key, the check box receives focus. Check
box text may also be specified in the Caption field of the Property
Toolbox.

2. The Use field should already contain a variable label.

If not, type the label of a variable, or press the ellipsis button to
choose or create a data dictionary field or a memory variable with
the Select Field dialog.

3. From the Justification drop down list, choose Left Justification,
Right Justification , or Default .

Left Justification arranges the check box (or icon) to the left of the
parameter text. Right Justification arranges the check box (or icon)
to the right of the parameter text. Default arranges the check box
according to any applicable settings in the data dictionary.

 4. Mode options: see Setting the Mode Attributes above.

Extra Tab

 5. In the Icon field, optionally select a standard icon from the drop
down list.

Adding an icon to a check box makes the check box look like a
command button.

This displays a small bitmap on the button face in addition to any
check box text. To select a standard icon, choose one of the named
items in the drop down list. To select an icon file (extension .ICO),
choose Select File... from the drop down list, then pick the file
using the standard open file dialog.

Tip: If you add an icon and text, you get a check box with both!
Make the resulting button large enough to display both.

6. In the Drop ID field, optionally type up to sixteen (16) comma
delimited signatures.

CHAPTER 10 SETTING CONTROL PROPERTIES

The Window Formatter adds the DROPID attribute to your check
box. The DROPID indicates this check box is a valid target for drag
and drop operations. The signature is a string constant that identifies
which types of drag and drop operations are valid for the check box.

Drag and drop capability means the user can select an item in one
window or control, hold down the left mouse button, drag the item to
another window or control, and release the mouse button, dropping
the item onto the other window or control, which can then look at
the item that was dropped, and do something with it.

Implementation of this capability requires that the source control
have a DRAGID attribute with a signature that matches the target’s
DROPID signature, and that the procedures that drive each window
have appropriate source code to process the drag and drop events.
See the Language Reference for more details and examples. Also see
the Using the List Box Formatter chapter, Adding Drag and Drop
Capability to the List Box.

Help Tab

See Setting Common Control Attributes above.

Position Tab

See Setting the AT Attribute above.

Actions Tab

The Actions tab prompts are all from the templates, in other words, the
prompts you see here vary with the template used to create the control.
Following are the standard action prompts for all check box controls. See
the Using Control, Code, and Extension Templates chapter for more
information. Also see the Using Control, Code, and Extension Templates
chapter for more information.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

The Actions tab leads to dialogs allowing you to name variables (other
than the USE variable) and change their values when the end user checks
or unchecks the box. Additionally, you can hide or unhide other controls
in the window.

Two group boxes with two pairs of buttons appear on the Actions tab.
These buttons set the behavior for When the Check Box is Checked ,
and When the Check Box is Unchecked .

6. Press the Assign Values button to open the Assign Values dialog.

You may specify multiple variable assignments. Press the Insert
button to add a new assignment. In the Variable to Assign entry
box, type the variable name, or press the ellipsis (...) button to
choose or create a data dictionary field or a memory variable with
the Select Field dialog.

In the Value to Assign entry box, type the value assigned to the
variable. You can then add code to your program to take appropriate
action based on the run time value of the variable(s). Press the OK
button to end the dialogs.

7. Press the Hide/Unhide Controls button to open the Hide/Unhide
Controls dialog.

You may specify multiple controls to hide/unhide. Press the Insert
button to add a new hide/unhide action to the list. In the Control to
hide/unhide entry box, type the control’s equate label, or press the
ellipsis (...) button to select from a list of control equate labels.

In the Hide or unhide control entry box, select Hide or Unhide .
Press the OK button to end the dialogs.

8. Optionally press the Files button to access the File Schematic
Definition dialog for this procedure.

Setting toggling
actions for a check

box.

CHAPTER 10 SETTING CONTROL PROPERTIES

9. Optionally press the Embeds button to embed source code at points
surrounding the event handling for this check box only.

10. Press the OK button to return to the Window Formatter .

Creating List Boxes

The LIST control is most useful for presenting a great number of choices
to the user. It can convey a large amount of data in a minimal area, which
has led to its use as an all-purpose data control. Using Clarion for
Windows, you can create list boxes which look like spreadsheet grids,
perform drag and drop tasks, and more.

When creating a list box, you define its data source, its format, and its
functionality. The development environment divides these property
definitions among several dialogs:

◆ The List Properties dialog specifies the file or queue that supplies
the list data, a drop down list versus a regular list, and the general
scrolling capability. In other words, the List Properties dialog
specifies all the properties of the list box that are not column-
specific. This dialog is discussed in this chapter.

◆ The List Box Formatter dialog lets you add (Populate or Insert),
delete, reorder, and resize the specific fields or columns that are
displayed in the list box. This tool is discussed in the following
chapter.

◆ The List Field Properties dialog is part of the List Box Formatter ,
and defines the appearance and behavior of individual list box
columns. For example, you can define column headers, width, and
individual column scrolling. This dialog is discussed in the
following chapter.

◆ The List Field Properties dialog also defines the appearance and
behavior of groups of columns within the list box. For example,
spreading a header across several columns.

Setting List Properties

1. From the Window Formatter , select the List Box tool, or choose
List Box from the Control menu, then click in the window.

The List Box Formatter dialog appears. This dialog manages the
columns or fields in your list box and is discussed in detail in the
following chapter.

2. Press the OK button to return to the Window Formatter.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

3. RIGHT-CLICK the list box and select Properties from the popup menu.

The List Properties dialog appears.

General Tab

4. In the Use field, type a descriptive, valid Clarion label, prefixed by a
question mark(?), or, name the variable the list box updates (no
question mark).

The variable receives the value the user selects from the list. You can
press the ellipsis (...) button to choose, or create, a data dictionary
field or memory variable from the Select Field dialog to specify a
variable name. Do not prefix with a question mark (?). Remember,
for entry controls, the USE attribute not only supplies the field
equate label for the control, it also specifies the name of the variable
that holds the data from the control.

Note: Two or more entry controls may update the same variable.
However, they must still have unique field equate labels. In
this circumstance, the Window Formatter automatically
creates unique field equate labels by appending a number to
field equate labels that would otherwise be duplicated.

5. In the From field, supply the data source for the list.

Sets the FROM attribute for the LIST. See the Language Reference
for more details. Generally, this is the label of a QUEUE structure,
but may also be a field within a QUEUE or a string constant.

If you use a Control template or a Wizard to build your list box, the
QUEUE label is supplied for you, as well as the code needed to
define and load the QUEUE.

6. In the Drop field specify the number of rows to “drop” the list.

Place a zero in the Drop field for a normal list box, with no drop
box. To create a drop down list box, type the number of drop
elements you wish to display.

7. From the Justification drop down list, choose Left , Center , Right ,
Decimal , or Default justification.

The List Properties
dialog.

CHAPTER 10 SETTING CONTROL PROPERTIES

Adds the LEFT, CENTER, RIGHT, or DECIMAL attribute to the
LIST. See the Language Reference for details. Left , Center , and
Right position the list data predictably, left, center, or right justified
in the list box. Default positions the data according to any applicable
settings in the data dictionary. Decimal justification aligns values by
their decimal points. Each justification may be offset by a distance
you specify. See Offset below.

These attributes are superseded by the FORMAT attribute, which is
added by Clarion Browse templates. That is, if you use the List Box
Formatter to populate your list box, the positioning of data will be
determined by the Clarion generated FORMAT string, and not by
these justification attributes.

8. In the Offset field, specify a justification offset in dialog units.

See the Glossary for definition of dialog units. Sets the offset value
for the LEFT, RIGHT, CENTER, and DECIMAL attributes. See
above. For CENTER justification, a negative value offsets to the left
of center and a positive value offsets to the right of center. For
DECIMAL justification, a negative value offsets to the left of the
decimal and a positive value offsets to the right of the decimal.

9. Check any combination of the Mode boxes.

See Setting the Mode Attributes above.

Extra Tab

10. In the Mark field, type in the name of a QUEUE, or QUEUE field if
you wish to allow the user to select more than one item from the list.

 The QUEUE field flags the selected items. Selected items get a ‘1’,
unselected items get a ‘0.’

11. Check the VCR checkbox to provide VCR scrolling buttons for your
list box.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

These special scrolling buttons include the following: Top of List (|<
), Page Up (<<), Entry Up (<), Locator (?), Entry Down (>),
Page Down (>>), and Bottom of List (>|).

The entry box to the right of the VCR checkbox is used in
conjunction with the Locator button. Optionally type the field equate
label of an entry control in this entry box. When the user presses the
Locator (?) button, focus shifts to the entry control identified by the
equate label. The user may type in data, then press TAB to scroll the
LIST to the closest matching entry.

12. Optionally, check the Immediate box to place the IMM attribute on
the LIST.

The IMM attribute generates an event whenever the user presses a
key while the list box has focus. This feature allows you to display
related information as the user scrolls or highlights new selections.

13. Optionally, check the Select Columns box to enable individual
column selection in a multi-column list box

Allows the user to highlight a multi-column list box field by field,
rather than one row at a time. This provides for spreadsheet grid
style movement of the highlight bar.

14. Optionally, check the Hide Selection box to place the NOBAR
attribute on the LIST.

The NOBAR attribute specifies the currently selected element in the
LIST is only highlighted when the LIST control has focus.

15. Optionally, check the Horizontal or Vertical boxes to add scroll bars
to your list box.

Check the scroll bar components you wish. The scroll bars
manipulate the entire list. You can add horizontal scroll bars for
individual columns with the List Box Formatter , which is
described in the next chapter.

16. In the Drag ID field, optionally type up to sixteen (16) comma
delimited signatures.

The Window Formatter adds the DRAGID attribute to your control.
The DRAGID indicates this control is a valid source for drag and
drop operations. The signature is a string constant that identifies
which types of drag and drop operations are valid for the control.

Drag and drop capability means the user can select an item in one
window or control, hold down the left mouse button, drag the item to
another window or control, and release the mouse button, dropping
the item onto the other window or control, which can then look at
the item that was dropped, and do something with it.

CHAPTER 10 SETTING CONTROL PROPERTIES

Implementation of this capability requires that the source control
have a DRAGID attribute with a signature that matches the target’s
DROPID signature, and that the procedures that drive each window
have appropriate source code to process the drag and drop events.
See the Language Reference for more details and examples. Also see
the Using the List Box Formatter chapter, Adding Drag and Drop
Capability to the List Box.

17. In the Drop ID field, optionally type up to sixteen (16) comma
delimited signatures.

The Window Formatter adds the DROPID attribute to your control.
The DROPID indicates this control is a valid target for drag and
drop operations. The signature is a string constant that identifies
which types of drag and drop operations are valid for the control.
See the Language Reference for more details and examples. Also see
the Using the List Box Formatter chapter, Adding Drag and Drop
Capability to the List Box.

Help Tab

See Setting Common Control Attributes above.

Position Tab

See Setting the AT Attribute above.

Actions Tab

The Actions tab will be blank unless you are using a control template to
build your list box. See the Using Control, Code, and Utility Templates
chapter for instructions on the Actions prompts for each control
template.

Setting Combo Box Properties

The COMBO control combines an entry box with a list box. It is useful
for when you expect string data which usually is a member of the list,
but sometimes is not. The Window Formatter allows you to create a
normal combo box, or a drop combo box.

Combo Box properties are set exactly like List Box properties except for
the following four additional properties.

General Tab

1. In the Picture field, specify the picture token for the control.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Pressing the ellipsis button allows you to select the picture token
from the Edit Picture String dialog .

The picture token forces the input data into a specific format. For
example, a picture token of @P##/##/##P forces a typical date
format.

Extra Tab

2. Specify case attributes for the entry field.

The entry box can automatically convert character from one case to
another as the user types. Upper case (UPR attribute) automatically
converts to all caps. Capitals (CAP attribute) is equivalent to
“Proper Name” (the first letter of each word will appear in caps).
Default (no attribute) accepts input in the case the user types it.

3. In the Entry Mode drop down list, choose Insert , Overwrite , or As
Is.

 Sets the entry mode for the entry field of the combo box. Insert
causes each keystroke to insert a new character and push existing
characters to the right. Overwrite causes each keystroke to type a
new character over an existing character. As Is causes each keystroke
to behave according to current system settings.

The Entry Mode applies only for windows with the MASK attribute
set. See Using the Window Formatter; Using the Window Properties
Dialog; Entry Patterns for more information.

4. Optionally, check the Read Only box, to prevent data entry in this
control.

Adds the READONLY attribute to the combo box (see the Language
Reference).

CHAPTER 10 SETTING CONTROL PROPERTIES

Setting Spin Box Properties

A SPIN control is a specialized entry box that only accepts values in a
predefined range. They also provide the user with ‘increase’ and
‘decrease’ buttons, which many people like because they can use the
mouse to change the value. The user can also type a value directly into
the control.

1. From the Window Formatter , select the Spin Box tool, or choose
Spin Box from the Control menu, then click in the window.

2. RIGHT-CLICK the spin box and select Properties from the popup
menu.

The Spin Properties dialog appears.

General Tab

1. In the Picture field, type a picture token.

The Picture field takes a display picture token that specifies input
format. You may press the ellipsis (...) button next to the field to pick
a display picture from the Edit Picture String dialog.

You may check the user entry against the picture at two points: as the
user types the data in, or when the user closes the dialog box.
Checking the data as the user types it incurs a slight performance
penalty. To do so, check the Entry P atterns box in the Window
Properties dialog for the window in which the entry box resides.
This turns the MASK attribute on for all controls in the window.

If the MASK attribute is off, entry checking takes place when the
user moves the focus to another control (for example, by TABBING to
another field).

The Spin Properties
dialog.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

If the user types in data in a format different from the picture, the
program will attempt to determine the format, then convert it to
match the picture (if no MASK attribute was specified). For
example, if the user types 'January 1, 1995' and the picture is @D1,
the program formats the input to "1/1/95. If the program cannot
determine the entry format, it will not update the USE variable. The
user will receive an audible prompt (beep), and the focus will return
to the entry control, ready for additional input.

2. In the Use field, type a variable label.

The variable receives the value the user selects from the list. The
same label, prefixed by a question mark (?) is the field equate label
that references the spin box in source code statements.

3. In the From field, supply the data source for the spin box.

Sets the FROM attribute for the SPIN. See the Language Reference
for more details. This is the label of a QUEUE structure, a field
within a QUEUE, or a string constant.

The FROM attribute is useful for values that progress in an irregular
increment. You may also wish to provide the user with string
constants formatted as Spin Box choices when the choices are a
limited progression such as the days of the week or the months of
the year.

The From field and Range limits fields are mutually exclusive.

4. From the Justification drop down list, choose Left , Center , Right ,
Decimal , or Default justification.

Adds the LEFT, CENTER, RIGHT, or DECIMAL attribute to the
LIST. See the Language Reference for details. Left , Center , and
Right position the list data predictably, left, center, or right justified
in the list box. Default positions the data according to any applicable
settings in the data dictionary. Decimal justification aligns the values
on their decimal points. Each justification may be offset by a
distance you specify. See Offset below.

5. In the Offset field, specify a justification offset in dialog units.

See the Glossary for definition of dialog units. Sets the offset value
for the LEFT, RIGHT, CENTER, and DECIMAL attributes. See
above. For CENTER justification, a negative value offsets to the left
of center and a positive value offsets to the right of center. For
DECIMAL justification, a negative value offsets to the left of the
decimal and a positive value offsets to the right of the decimal.

6. Check any combination of the Mode boxes.

See Setting the Mode Attributes above.

CHAPTER 10 SETTING CONTROL PROPERTIES

Extra Tab

7. Specify the upper and lower Range limits, and the Step value.

Place the highest value which the control should contain in the
Range Upper field. The value should be formatted to match the
Picture field. Place the lowest acceptable value in the Lower field.
Place the step value—the amount by which each press of the
increase or decrease buttons should change the spin box value—in
the Step field.

The From field and Range limits fields are mutually exclusive.

8. Specify case attributes for the entry field.

The entry box can automatically convert character from one case to
another as the user types. Upper case (UPR attribute) automatically
converts to all caps. Capitals (CAP attribute) is equivalent to
“Proper Name” (the first letter of each word will appear in caps).
Default (no attribute) accepts input in the case the user types it.

9. In the Entry Mode drop down list, choose Insert, Overwrite , or As
Is.

 Sets the entry mode for the entry field of the spin box. Insert causes
each keystroke to insert a new character and push existing characters
to the right. Overwrite causes each keystroke to type a new character
over an existing character. As Is causes each keystroke to behave
according to current system settings.

The Entry Mode applies only for windows with the MASK attribute
set. See Using the Window Formatter; Using the Window Properties
Dialog; Entry Patterns for more information.

10. Check the appropriate Options boxes.

There are three option flags you may toggle on or off independently.

Immediate (the IMM attribute) specifies immediate event
generation whenever the user presses any key.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Required (the REQ attribute) specifies that the control
may not be left blank or zero.

Read Only (the READONLY attribute) prevents data entry
in this control. Use this to declare display-only
data.

11. In the Drop ID field, optionally type up to sixteen (16) comma
delimited signatures.

The Window Formatter adds the DROPID attribute to your control.
The DROPID indicates this control is a valid target for drag and
drop operations. The signature is a string constant that identifies
which types of drag and drop operations are valid for the control.

Drag and drop capability means the user can select an item in one
window or control, hold down the left mouse button, drag the item to
another window or control, and release the mouse button, dropping
the item onto the other window or control, which can then look at
the item that was dropped, and do something with it.

Implementation of this capability requires that the source control
have a DRAGID attribute with a signature that matches the target’s
DROPID signature, and that the procedures that drive each window
have appropriate source code to process the drag and drop events.
See the Language Reference for more details and examples. Also see
the Using the List Box Formatter chapter, Adding Drag and Drop
Capability to the List Box.

Help Tab

See Setting Common Control Attributes above.

Position Tab

See Setting the AT Attribute above.

Setting Entry Box Properties

An ENTRY control allows the user to enter data from the keyboard.
Clarion provides extensive options for automatically validating user
entry.

◆ You may specify a picture for the field, automatically formatting the
data the user enters, or an initial value.

◆ You may validate the data the user enters either at the time it’s typed,
or when the focus changes to another control.

To set the properties for an entry box:

CHAPTER 10 SETTING CONTROL PROPERTIES

1. From the Window Formatter , select the Entry Box tool, or choose
Entry Box from the Control menu, then click in the window.

 The Select Field dialog appears allowing you to choose or create a
data dictionary field or a memory variable to hold the data input to
this control.

2. RIGHT-CLICK the Entry Box and select Properties from the popup
menu.

The Entry Pr operties dialog appears.

General Tab

1. Specify a Picture .

The Picture field is a display picture token that specifies the input
format for the data entered into the control. For example, you may
specify a string of 20 characters as @s20. You may press the ellipsis
(...) button next to the field to pick a display picture from the picture
formatter.

You may check the user entry against the picture at two points: as the
user types the data in, or when the user closes the dialog box.
Checking the data as the user types it incurs a slight performance
penalty. To do so, check the Entry Patterns box in the Window
Properties dialog for the window in which the entry box resides.
This turns the MASK attribute on for all controls in the window.

If the MASK attribute is off, entry checking takes place when the
user moves the focus to another control (for example, by TABBING to
another field).

The Entry Properties
dialog.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

If the user types in data in a format different from the picture, the
program will attempt to determine the format, then convert it to
match the picture (if no MASK was specified). For example, if the
user types ‘January 1, 1995’ and the picture is @D1, the program
formats the input to “1/1/95. If the program cannot determine the
entry format, it will not update the USE variable. The user will
receive an audible prompt (beep), and the focus will return to the
entry control, ready for additional input.

2 Specify a Use attribute.

Type the name of the variable to receive the value that the user will
enter in the control.

3. From the Justification drop down list, choose Left , Center , Right ,
Decimal , or Default justification.

Adds the LEFT, CENTER, RIGHT, or DECIMAL attribute to the
LIST. See the Language Reference for details. Left , Center , and
Right position the entry data predictably, left, center, or right
justified in the entry box. Default positions the data according to any
applicable settings in the data dictionary. Decimal justification
aligns values by their decimal points. Each justification may be
offset by a distance you specify. See Offset below.

4. In the Offset field, specify a justification offset in dialog units.

See the Glossary for definition of dialog units. Sets the offset value
for the LEFT, RIGHT, CENTER, and DECIMAL attributes. See
above. For CENTER justification, a negative value offsets to the left
of center and a positive value offsets to the right of center. For
DECIMAL justification, a negative value offsets to the left of the
decimal and a positive value offsets to the right of the decimal.

 5. Mode options: see Setting the Mode Attributes above.

Extra Tab

CHAPTER 10 SETTING CONTROL PROPERTIES

6. Specify case attributes for the entry field.

The entry box can automatically convert character from one case to
another as the user types. Upper case (UPR attribute) automatically
converts to all caps. Capitals (CAP attribute) is equivalent to
“Proper Name” (the first letter of each word will appear in caps).
Default (no attribute) accepts input in the case the user types it.

7. Optionally specify an Entry Mode .

Choose either Insert (the INS attribute) or Overwrite (the OVR
attribute). The Entry Mode applies only for windows with the
MASK attribute set.

8. Set the Option flags.

There are three option flags you may toggle on or off independently.

Immediate (the IMM attribute) specifies immediate event
generation whenever the user presses any key.

Required (the REQ attribute) specifies that the control
may not be left blank or zero.

Read Only (the READONLY attribute) prevents data entry
in this control. Use this to declare display-only
data.

9. In the Drop ID field, optionally type up to sixteen (16) comma
delimited signatures.

The Window Formatter adds the DROPID attribute to your control.
The DROPID indicates this control is a valid target for drag and
drop operations. The signature is a string constant that identifies
which types of drag and drop operations are valid for the control.

Drag and drop capability means the user can select an item in one
window or control, hold down the left mouse button, drag the item to
another window or control, and release the mouse button, dropping
the item onto the other window or control, which can then look at
the item that was dropped, and do something with it.

Implementation of this capability requires that the source control
have a DRAGID attribute with a signature that matches the target’s
DROPID signature, and that the procedures that drive each window
have appropriate source code to process the drag and drop events.
See the Language Reference for more details and examples. Also see
the Using the List Box Formatter chapter, Adding Drag and Drop
Capability to the List Box.

Help Tab

See Setting Common Control Attributes above.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Tip: The I-Beam, which signals text entry, is the standard choice
for the active cursor for a text or entry control.

Position Tab

See Setting the AT Attribute above.

Actions Tab

The Actions tab prompts are all from the templates, in other words, the
prompts you see here vary with the template used to create the control.
Following are the standard action prompts for all entry controls. See the
Using Control, Code, and Extension Templates chapter for more
information.

The standard Actions prompts are designed to provide data validation
support for your entry controls. The tab is divided into two parallel
sections. The When the Control is Selected section provides validation
when the control receives focus (when the user TABS onto, or mouse
CLICKS the control). The When the Control is Accepted section
provides data validation when the control loses focus after data have
been entered in it. The control loses focus when the user TABS off the
control, mouse CLICKS to a different control or window, or closes the
window without cancelling. The two sections are not mutually exclusive,
so you can provide validation at both points.

The standard Actions prompts are designed with selection list lookup
validation in mind, however, they are flexible enough to allow any
custom validation you might want to provide.

Specifying a lookup
validation procedure

for an entry field.

CHAPTER 10 SETTING CONTROL PROPERTIES

10. In the Lookup Key field, type a key label from the lookup file, or
press the ellipsis (...) button to select a key from the Select Key
dialog.

A lookup file is a file which contains all the valid values for the
entry field, and they are directly accessible through a unique key,
which is the lookup key you name here.

For example, a file containing all of the customer numbers for your
application could be a lookup file. The key label could be
CUS:KeyCustNumber.

The Select Key dialog allows you to select from files and keys
already defined in the Data Dictionary, or to define a new key if
necessary.

Note: Defining a new key changes the file format and may
therefore require you to convert any existing files to the new
format.

Tip: This lookup validation works best with a single component
unique key.

11. In the Lookup Field field, type the label of a component field of the
lookup key, or press the ellipsis (...) button to select a field from the
Select component from key dialog.

This is the field within the key that contains the same value being
validated. Ideally, this field is the only component of a unique key.
Following our example above, the field label could be
CUS:CustNumber.

12. In the Lookup Procedure combo box, type a procedure name, or
choose an existing procedure from the drop down list.

This is the procedure that is called when the user enters an invalid
value, and the lookup fails. The usual purpose of this procedure is to
allow the user to choose a valid value from the lookup file.

Select procedures (or Browse procedures) generated by Clarion’s
Wizards) are appropriate for this purpose. Alternatively, you may
hand-code a procedure. Continuing our example above, the
procedure name could be SelectCustomer.

Based on the previous three entries Clarion builds the following
validation code into your procedure:

LookupField = EntryField !get user’s entry
GET(LookupFile,LookupKey) !search lookup file
IF ERRORCODE() !if user entry not found...

GlobalRequest = SelectRecord !ask user to select
LookupProcedure !from this lookup procedure
LocalResponse = GlobalResponse !get procedure’s response
IF LocalResponse = RequestCompleted !if user did select...

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

EntryField = LookupField !put selection in entry box
DISPLAY(?EntryField) !refresh the screen

ELSE !if user did not select...
SELECT(?EntryField) !give focus to entry box
CYCLE !give control back to user

END
END

13. Optionally, press the Advanced button to customize the (Selected or
Accepted) event handling source code for this entry control.

Pressing the Advanced button calls the Embedded Source dialog.
The only embed point shown is after the code generated to call the
lookup procedure specified above. For more embed points, and
further customization, press the Embeds button (see Embeds
below). Also see Defining Embedded Source Code in the Using the
Application Generator chapter.

14. Optionally, check the Perform lookup during non-stop select
box.

Checking this box tells Clarion to perform the validation when the
window is accepted, even if the entry control never received focus.
From a practical viewpoint, checking this box prevents the user from
entering blanks by virtue of having pressed the window’s “OK
button” without ever TABBING or CLICKING onto the entry field.

This option is only applicable to the When the Control is Accepted
section.

15. Optionally, check the Force Window Refresh when Accepted box.

Checking this box ensures that everything (including formulas and
other entry fields) on the window is current and up-to-date when the
user TABS off this entry control.

16. Optionally press the Files button to access the File Schematic
Definition dialog for this procedure.

17. Optionally press the Embeds button to embed source code at points
surrounding the event handling for this check box only.

18. Press the OK button to return to the Window Formatter .

Setting Text Control Properties

The TEXT control provides a multi-line data entry field. This control is
especially suitable for holding a long string.

To set the properties for a text box:

1. From the Window Formatter , select the Text Box tool, or choose
Text Box from the Control menu, then click in the window.

CHAPTER 10 SETTING CONTROL PROPERTIES

 The Select Field dialog appears allowing you to choose or create a
data dictionary field or a memory variable to hold the data input to
this control.

2. RIGHT-CLICK the text box and select Properties from the popup menu.

The Text Properties dialog appears.

General Tab

3. Specify a Use attribute.

Type the name of the variable to receive the value that the user enters
in the control. When using multi-line controls, be sure the variable is
large enough to hold the amount of data you expect your users to
enter in the control.

4. From the Justification drop down list, choose Left , Center , Right ,
Decimal , or Default justification.

Adds the LEFT, CENTER, RIGHT, or DECIMAL attribute to the
LIST. See the Language Reference for details. Left , Center , and
Right position the list data predictably, left, center, or right justified
in the list box. Default positions the data according to any applicable
settings in the data dictionary. Decimal justification aligns values by
their decimal points.

 5. Mode options: see Setting the Mode Attributes above.

Extra Tab

6. Specify case attributes for the entry field.

The Text Pr operties
dialog.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

The entry box can automatically convert character from one case to
another as the user types. Upper case (UPR attribute) automatically
converts to all caps. Default (no attribute) accepts input in the case
the user types it.

7. Set the Option flags.

There are two option flags you may toggle on or off independently.

Required (the REQ attribute) specifies that the control
may not be blank or zero.

Read Only (the READONLY attribute) prevents data entry
in this control. Use this to declare display-only
data.

8. Optionally, check the Horizontal or Vertical boxes to add scroll bars
to your text box.

9. In the Drop ID field, optionally type up to sixteen (16) comma
delimited signatures.

The Window Formatter adds the DROPID attribute to your control.
The DROPID indicates this control is a valid target for drag and
drop operations. The signature is a string constant that identifies
which types of drag and drop operations are valid for the control.

Drag and drop capability means the user can select an item in one
window or control, hold down the left mouse button, drag the item to
another window or control, and release the mouse button, dropping
the item onto the other window or control, which can then look at
the item that was dropped, and do something with it.

Implementation of this capability requires that the source control
have a DRAGID attribute with a signature that matches the target’s
DROPID signature, and that the procedures that drive each window
have appropriate source code to process the drag and drop events.
See the Language Reference for more details and examples. Also see
the Using the List Box Formatter chapter, Adding Drag and Drop
Capability to the List Box.

Help Tab

See Setting Common Control Attributes above.

Tip: The I-Beam, which signals text entry, is the standard choice
for the active cursor for a text control.

Position Tab

See Setting the AT Attribute above.

CHAPTER 10 SETTING CONTROL PROPERTIES

NON USER INTERACTIVE CONTROLS

Non user interactive controls do not accept data, but instead guide the
user to other controls with text or graphics. For example:

◆ A string in a dialog box can provide directions for filling out the data
field.

◆ One of the simplest graphic elements—a group box—can visually
associate a group of controls, signalling the user that the entries all
relate to the same thing.

◆ An image or graphic can do more than embellish a dialog. It can
convey meaning to a process that might otherwise take many, many
words.

Setting String Control Properties

The String control allows you to place a string constant on screen. It
optionally allows you to substitute a variable.

The String Proper ties dialog contains the following options.

General Tab

1. In the Parameter field, type the string constant, or a picture token.

A string constant is displayed as typed. A picture token is used to
format a variable string for display.

2. In the Use field, type a field equate label, or name a variable for
display.

Type a field equate label to reference the control in executable code.

3. From the Justification drop down list, choose Left , Center , Right ,
Decimal , or Default justification.

The String Properties
dialog.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Adds the LEFT, CENTER, RIGHT, or DECIMAL attribute to the
LIST. See the Language Reference for details. Left , Center , and
Right position the list data predictably, left, center, or right justified
in the list box. Default positions the data according to any applicable
settings in the data dictionary. Decimal justification aligns values by
their decimal points. Each justification may be offset by a distance
you specify. See Offset below.

4. In the Offset field, specify a justification offset in dialog units.

See the Glossary for definition of dialog units. Sets the offset value
for the LEFT, RIGHT, CENTER, and DECIMAL attributes. See
above. For CENTER justification, a negative value offsets to the left
of center and a positive value offsets to the right of center. For
DECIMAL justification, a negative value offsets to the left of the
decimal and a positive value offsets to the right of the decimal.

5. Optionally check the Variable String box.

This specifies that you want to display the contents of a variable in
the string control. If so, place a picture in the Parameter field, such
as @s24.

6. Specify whether you wish the control background to be
Transparent .

This instructs Windows to suppress the rectangular region around the
text — the background. Normally, Windows will paint this the same
uniform color as the window below the control,

Tip: When you place text on top of an IMAGE, or a colored
graphic such as a BOX, turn the TRN attribute on, so that the
text doesn’t obscure the graphic.

 7. Mode options: see Setting the Mode Attributes above.

Extra Tab

 8. In the Drop ID field, optionally type up to sixteen (16) comma
delimited signatures.

The Window Formatter adds the DROPID attribute to your button.
The DROPID indicates this button is a valid target for drag and drop
operations. The signature is a string constant that identifies which
types of drag and drop operations are valid for the button.

Drag and drop capability means the user can select an item in one
window or control, hold down the left mouse button, drag the item to
another window or control, and release the mouse button, dropping
the item onto the other window or control, which can then look at
the item that was dropped, and do something with it.

CHAPTER 10 SETTING CONTROL PROPERTIES

Implementation of this capability requires that the source control
have a DRAGID attribute with a signature that matches the target’s
DROPID signature, and that the procedures that drive each window
have appropriate source code to process the drag and drop events.
See the Language Reference for more details and examples. Also see
the Using the List Box Formatter chapter, Adding Drag and Drop
Capability to the List Box.

Help Tab

See Setting Common Control Attributes above.

Position Tab

See Setting the AT Attribute above.

Setting Prompt Control Properties

The PROMPT control allows you to place a string on screen which will
automatically provides an accelerator key to the next active control
following the prompt. It is almost identical to the STRING control,
except that it has no variable capability. See Setting String Properties
above.

Setting Group Box Control Properties

A GROUP control places a box around two or more controls. It visually
associates the controls for the user, and allows you to address all the
controls as one entity — making it easy, for example, to disable all at
once.

The Group Properties dialog contains the following options.

General Tab

1. In the Parameter field, type a string constant .

The Group
Properties dialog.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

The Parameter field requires a string constant containing the prompt
for the group of controls. This string appears at run time in the top
border of the group box. An ampersand (&) within the text means
the next character is the accelerator key for the group. The character
is underlined, and when the user presses ALT + the corresponding
key, the first control in the group receives focus. This text may also
be specified in the Caption field of the Property Toolbox.

2. In the Use field, type a field equate label.

3. Mode options: see Setting the Mode Attributes above.

Extra Tab

4. Optionally specify that the group box should be invisible.

By un-checking the Boxed box, you may make the group box and
its parameter text invisible to the user. The group box will be visible
in the Window Formatter , but invisible in Preview! mode.

5. In the Drop ID field, optionally type up to sixteen (16) comma
delimited signatures.

The Window Formatter adds the DROPID attribute to your button.
The DROPID indicates this button is a valid target for drag and drop
operations. The signature is a string constant that identifies which
types of drag and drop operations are valid for the button.

Drag and drop capability means the user can select an item in one
window or control, hold down the left mouse button, drag the item to
another window or control, and release the mouse button, dropping
the item onto the other window or control, which can then look at
the item that was dropped, and do something with it.

Implementation of this capability requires that the source control
have a DRAGID attribute with a signature that matches the target’s
DROPID signature, and that the procedures that drive each window
have appropriate source code to process the drag and drop events.
See the Language Reference for more details and examples. Also see
the Using the List Box Formatter chapter, Adding Drag and Drop
Capability to the List Box.

CHAPTER 10 SETTING CONTROL PROPERTIES

Help Tab

See Setting Common Control Attributes above.

Position Tab

See Setting the AT Attribute above.

Setting Progress Bar Properties

The PROGRESS control declares a control that displays a progress bar.
This usually displays the current percentage of completion of a batch
process by incrementally “filling” the bar as the process progresses.

The Progress Properties dialog contains the following options.

General Tab

1. In the Use field, type a field equate label.

The field equate label references the progress bar in program
statements.

If a variable is named as the USE attribute, the progress bar is
automatically updated whenever the value in that variable changes. If
the USE attribute is a field equate label, you must directly update the
display by assigning a value (within the range defined by the
RANGE attribute) to the control’s PROP:progress property.

 2. Mode options: see Setting the Mode Attributes above.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Extra Tab

3. Specify the Range of values the progress bar displays.

If omitted, the default range is from zero (0) to one hundred (100).

4. In the Drop ID field, optionally type up to sixteen (16) comma
delimited signatures.

The Window Formatter adds the DROPID attribute to your control.
The DROPID indicates this control is a valid target for drag and
drop operations. The signature is a string constant that identifies
which types of drag and drop operations are valid for the control.

Drag and drop capability means the user can select an item in one
window or control, hold down the left mouse button, drag the item to
another window or control, and release the mouse button, dropping
the item onto the other window or control, which can then look at
the item that was dropped, and do something with it.

Implementation of this capability requires that the source control
have a DRAGID attribute with a signature that matches the target’s
DROPID signature, and that the procedures that drive each window
have appropriate source code to process the drag and drop events.
See the Language Reference for more details and examples. Also see
the Using the List Box Formatter chapter, Adding Drag and Drop
Capability to the List Box.

Help Tab

See Setting Common Control Attributes above.

Position Tab

See Setting the AT Attribute above.

CHAPTER 10 SETTING CONTROL PROPERTIES

Setting Image Control Properties

The IMAGE control allows you to place bitmapped and vector images in
a window. The bitmap file formats supported are .BMP, .PCX, .GIF,
.ICO and .JPG. The vector file format supported is .WMF. Clarion for
Windows can support up to 16.7 million color resolution.

Use the PALETTE attribute on your window to ensure ample color
support for your images. The PALETTE attribute specifies
how many colors you want this window to use when it is the
foreground window. This is applicable in hardware modes
where a palette is in use and spare colors are available. See
the Language Reference for details.

The Image Properties dialog contains the following options.

General Tab

1. Select a graphics file.

Type in a file name, or press the ellipsis (...) button to the right of the
File field to select a graphics file using the standard open file dialog.

Tip: Bitmaps can take up lots of memory. If your application
utilizes many bitmaps, test it, and monitor the free memory
after displaying large bitmaps.

2. Place a field equate label in the Use field.

The field equate label references the image in program statements.

 3. Mode options: see Setting the Mode Attributes above.

Press the ellipsis
button to choose an

image file from an
Open File dialog.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Extra Tab

4. Optionally add scroll bars.

By checking the Horizontal and/or Vertical check boxes, you may
specify that you wish the control to automatically add scroll bars if
the image is larger than the control size.

Position Tab

See Setting the AT Attribute above.

Tip: For IMAGE controls, Default displays the picture at the size
it was created.

Setting Region Control Properties

A REGION control is simply a rectangular area of the screen. Its main
purpose is to provide a reference to test whether a given event—such as a
mouse event—occurred within that region.

You may give a region control color, or provide for a cursor change when
the user passes the mouse over the region.

General Tab

1. Place a field equate label in the Use field.

The field equate label references the region in program statements.

CHAPTER 10 SETTING CONTROL PROPERTIES

 2. Mode options: see Setting the Mode Attributes above.

Extra Tab

3. Specify the Fill and Border colors.

Check the Fill and Border check boxes first—unless you wish either
of these elements to be transparent. Then press the Fill Color... or
Border Color... buttons. The standard Color dialog appears. Select a
color by clicking on the color selection square, or add a custom
color. A color sample is displayed beside each button.

4. You may add the IMM attribute to the Region control by checking
the Immediate checkbox.

This allows you to monitor whenever the user passes the mouse over
the region; however, it incurs much overhead at runtime, so should
be used sparingly.

5. In the Drag ID field, optionally type up to sixteen (16) comma
delimited signatures.

The Window Formatter adds the DRAGID attribute to your control.
The DRAGID indicates this control is a valid source for drag and
drop operations. The signature is a string constant that identifies
which types of drag and drop operations are valid for the control.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Drag and drop capability means the user can select an item in one
window or control, hold down the left mouse button, drag the item to
another window or control, and release the mouse button, dropping
the item onto the other window or control, which can then look at
the item that was dropped, and do something with it.

Implementation of this capability requires that the source control
have a DRAGID attribute with a signature that matches the target’s
DROPID signature, and that the procedures that drive each window
have appropriate source code to process the drag and drop events.
See the Language Reference for more details and examples. Also see
the Using the List Box Formatter chapter, Adding Drag and Drop
Capability to the List Box.

6. In the Drop ID field, optionally type up to sixteen (16) comma
delimited signatures.

The Window Formatter adds the DROPID attribute to your control.
The DROPID indicates this control is a valid target for drag and
drop operations. The signature is a string constant that identifies
which types of drag and drop operations are valid for the control.
See the Language Reference for more details and examples. Also see
the Using the List Box Formatter chapter, Adding Drag and Drop
Capability to the List Box.

Help Tab

See Setting Common Control Attributes above.

Position Tab

See Setting the AT Attribute above.

Setting Line Control Properties

The LINE control allows you to place a straight line in your windows.
You may choose a line color.

The Line Proper ties dialog contains the following options.

General Tab

1. Place a field equate label in the Use field.

The field equate label references the line in program statements.

 2. Mode options: see Setting the Mode Attributes above.

CHAPTER 10 SETTING CONTROL PROPERTIES

Extra Tab

3. Specify the Line Color .

Press the Line Color... button. The standard Color dialog will
appear. Select a color by clicking on the color selection square, or
add a custom color. A color sample is displayed beside the button.

Tip: To heighten the “chiselled” look of a 3D window with a menu
bar, place a white line control of 0 height, and FULL width,
starting at point 0,0. The line sets off the gray area of the
window against the menu bar.

Position Tab

See Setting the AT Attribute above.

Setting Box Control Properties

The Box control allows you to place a square or rectangle in your
windows. You may fill the box with a color, and specify a border color.
You may also specify it should have rounded corners.

The Box control cannot receive focus, nor can it generate events.

The Box Properties dialog contains the following options.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

General Tab

1. Place a field equate label in the Use field.

The field equate label references the Box in program statements.

 2. Mode options: see Setting the Mode Attributes above.

Extra Tab

3. Specify the Fill and Border colors.

Check the Fill and Border check boxes first—unless you wish either
of these elements to be transparent. Then press the Fill Color... or
Border Color... buttons. The standard Color dialog appears. Select a
color by clicking on the color selection square, or add a custom
color. A color sample displays beside each button.

4. Optionally specify the Box should appear as a rounded Box by
marking the checkbox.

The corners of the box will be rounded.

Position Tab

See Setting the AT Attribute above.

Tip: While you can set the size of the box and other graphic
controls by manually typing in coordinates, it is much easier
to draw it directly in the Windows Formatter.

CHAPTER 10 SETTING CONTROL PROPERTIES

Setting Ellipse Control Properties

The ELLIPSE control allows you to place a circle or ellipse in your
windows. You may fill the ellipse with a color, and specify a border
color.

The ellipse control cannot receive focus, nor can it generate events.

The Ellipse Properties dialog contains the following options.

General Tab

1. Place a field equate label in the Use field.

The field equate label references the ellipse in program statements.

 2. Mode options: see Setting the Mode Attributes above.

Extra Tab

3. Specify the Fill and Border colors.

Check the Fill and Border check boxes first—unless you wish either
of these elements to be transparent. Then press the Fill Color... or
Border Color... buttons. The standard Color dialog appears. Select a
color by clicking on the color selection square, or add a custom
color. A color sample displays beside each button.

Position Tab

See Setting the AT Attribute above.

Tip: While you can set the size of the ellipse and other graphic
controls by manually typing in coordinates, it is much easier
to draw it directly in the Window Formatter.

Setting Property Sheet Properties

The SHEET control declares a group of TAB controls that offer the user
multiple pages of controls for a single window. The multiple TAB
controls in the SHEET structure define the pages displayed to the user.
The SHEET structure’s USE variable receives the text of the TAB
control selected by the user.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

General Tab

1. Place a field equate label in the Use field.

The field equate label references the property sheet in program
statements.

 2. Mode options: see Setting the Mode Attributes above.

Extra Tab

3. Check the Wizard box to hide the “tab” portion of the TAB controls.

Hiding the tabs aids in creating a wizard. A wizard is a window with
a "tabless" SHEET control containing one or more TABS. You'll
need to write the code to handle the "turning of the pages". See How
to Create a Wizard in the on-line help. Also see the
CW\EXAMPLES\APPS\WIZDEMO\WIZ.APP application.

Tip: Do not check this box until you are finished designing the
window!

4. Check the Spread box to resize the tabs on the TABs to fill all the
available space on the SHEET.

The resizing algorithm considers the length of the text displayed on
each tab, the number of tabs, and the available space on the property
sheet.

5. In the Drop ID field, optionally type up to sixteen (16) comma
delimited signatures.

CHAPTER 10 SETTING CONTROL PROPERTIES

The Window Formatter adds the DROPID attribute to your control.
The DROPID indicates this control is a valid target for drag and
drop operations. The signature is a string constant that identifies
which types of drag and drop operations are valid for the control.

Drag and drop capability means the user can select an item in one
window or control, hold down the left mouse button, drag the item to
another window or control, and release the mouse button, dropping
the item onto the other window or control, which can then look at
the item that was dropped, and do something with it.

Implementation of this capability requires that the source control
have a DRAGID attribute with a signature that matches the target’s
DROPID signature, and that the procedures that drive each window
have appropriate source code to process the drag and drop events.
See the Language Reference for more details and examples. Also see
the Using the List Box Formatter chapter, Adding Drag and Drop
Capability to the List Box.

Help Tab

See Setting Common Control Attributes above.

Position Tab

See Setting the AT Attribute above.

Setting Tab Control Properties

The TAB structure declares a group of controls. This group is one of
many pages of controls that may be contained within a SHEET structure.
The multiple TAB structures within the SHEET structure define the
pages displayed to the user. The SHEET structure’s USE attribute
receives the text of the TAB control selected by the user.

The Windows 95 standard to change from tab to tab is CTRL+TAB. Clarion
TAB controls follow this standard, both in the development environment
and in a compiled application.

Note: If you nest TABS, only the top level is controlled by CTRL+TAB.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

General Tab

1. In the Parameter field, type a string constant.

If the control is to display a variable, type a picture token in this
field.

2. In the Use field, type a field equate label.

The field equate label references the tab control in program
statements.

 3. Mode options: see Setting the Mode Attributes above.

Extra Tab

4. Check the Required box to enforce input to required input fields.

When checked, your program automatically checks that all ENTRY
controls with the REQ attribute are neither blank nor zero.

Specify this type of tab when a window also contains an ENTRY or
TEXT control field with the REQ attribute (or else use the
INCOMPLETE function to test the ENTRY controls). When the user
clicks on a tab with the REQ attribute and an ENTRY field is blank
or zero, the first required control which is blank or zero receives the
focus.

5. In the Drop ID field, optionally type up to sixteen (16) comma
delimited signatures.

The Window Formatter adds the DROPID attribute to your control.
The DROPID indicates this control is a valid target for drag and
drop operations. The signature is a string constant that identifies
which types of drag and drop operations are valid for the control.

CHAPTER 10 SETTING CONTROL PROPERTIES

Drag and drop capability means the user can select an item in one
window or control, hold down the left mouse button, drag the item to
another window or control, and release the mouse button, dropping
the item onto the other window or control, which can then look at
the item that was dropped, and do something with it.

Implementation of this capability requires that the source control
have a DRAGID attribute with a signature that matches the target’s
DROPID signature, and that the procedures that drive each window
have appropriate source code to process the drag and drop events.
See the Language Reference for more details and examples. Also see
the Using the List Box Formatter chapter, Adding Drag and Drop
Capability to the List Box.

Help Tab

See Setting Common Control Attributes above.

Position Tab

The position of the TAB is determined by the position of the parent
SHEET.

CUSTOM CONTROLS

Setting Custom Control Properties

Custom controls are “add-in” controls sold by many third party vendors.
These perform a very wide variety of tasks, from sliders and gauge
controls to TWAIN image capture add-ins. The Window Formatter
allows you to directly place these controls once you “register” the
external libraries.

The specific custom control format Clarion supports is the Microsoft
Visual Basic control format, normally given the .VBX extension. There
is one important limitation:

◆ Clarion supports .VBX properties compatible with Microsoft Visual
Basic 1.0. Custom controls which require VB 2.0 or higher are
incompatible.

This is in line with other non-Visual Basic platforms, such as the
Microsoft Foundation Classes v. 2.0. The biggest difference between
level one and level two or higher .VBX’s is that the latter contain
“hooks” into the MS Access database engine which ships with Visual
Basic 2.x and higher. The level number refers to the VB version

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

number.

Tip: If the vendor description of a .VBX doesn’t specifically state
whether the control is designed for Visual Basic 1, you can
immediately identify a level two or higher control if they
identify it as a “data bound” control.

Custom control libraries usually require a license file (*.LIC) before you
can add the control to your applications. The library vendor provides the
file when you buy the library. When you distribute the application to
your end users, you distribute the .VBX file only, not the license file.

Additionally, when you ship the .VBX file to your end users, follow the
library vendor’s instructions as to where to place the .VBX control
file(s).

Registering Your .VBX Custom Control Libraries

Before you can place a custom control in a window, you must register
the .VBX file which contains it. To do so:

1. From Clarion’s main menu, choose Setup ➤ VBX Custom Control
Registry .

2. Press the Add button in the VBX Custom Control Registry dialog
box.

3. Select the .VBX file within the Add Custom Control dialog, and
press OK .

Some .VBX vendors install their .VBX’s to the \Windows\System
directory, while others prefer private directories. When you install a
.VBX library to your hard drive, make a note of where you put it, so
that you can locate it with the Open File dialog.

For Clarion for Windows, the .VBX must be in the application’s
directory, or somewhere in the system path.

4. Press OK to close the VBX Custom Control Registry dialog.

Adding a Custom Control to a Window

1. From the Window Formatter , select the Custom Control tool, or
choose Custom Control from the Control menu, then CLICK in the
window.

CHAPTER 10 SETTING CONTROL PROPERTIES

The Select Custom Control dialog appears. This dialog allows you
to select controls from the VBX Custom Control Registry.
Highlight the control you want. When you highlight a control, if the
Sample box is checked, the dialog box will display a copy of the
control in its default settings.

2. Press the OK button to return to the Window Formatter.

3. RIGHT-CLICK the custom control and select Properties from the popup
menu.

The Custom Control Properties dialog appears.

4. Optionally type a label for the control in the Text field.

If the control supports a label, it will appear as part of the control. In
practice, most controls will require you to specify a title label as a
Visual Basic Control property, explained below.

5. Type a field equate label or variable name in the Use field.

The variable will nominally receive the value of the control. If the
control accepts user entry, you will more likely retrieve the value
entered by the user by accessing a Visual Basic Control property,
explained below.

.VBX’s also generate a specific event (EVENT:vbxevent). The event
represents a string message sent from the .VBX to the Clarion
application. You can examine the event, which is also explained
below.

6. In the Custom Properties entry field, type start-up properties for
the control.

The Custom Properties list appears at the left of the dialog. It
displays the Visual Basic Control properties and their default values.
If you enter a start-up value in the dialog, the Window Formatter
automatically adds it to the Clarion language statement that places
the control in the window.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

When you highlight a Visual Basic Control property in the list, either
an edit box or a drop down list appears at the lower left corner of the
dialog. Type a value or variable in the edit box, or choose from the
drop.

The documentation from the .VBX library vendor will describe the
Visual Basic Control properties you may set. See below to find out
how to change them in executable code, or how to retrieve user-entry
from the custom control.

7. Set optional properties.

These include CURSOR, POSITION, and others.

8. Optionally check the Meta box to generate a Windows metafile
(.WMF) for reports.

When adding a .VBX control to a report, this specifies that the print
engine generates a metafile to represent the control.

9. Press the OK button.

Setting Visual Basic Control Properties

The .VBX file acts as a mostly self-contained external library. When the
application loads it into memory, you can exchange information between
the application and the custom control via the properties. The Visual
Basic Control properties are a message map.

The .VBX properties are the most common means by which a non-VB
application utilizes a VBX's functionality. Think of a property as a
variable which both the application and the VBX can access (this is a
very loose comparison).

If both the application and the VBX monitor the property, they can use it
to signal each other. When the value of the property changes, it's a signal
that something may need to be done. Each VBX has its own properties.
You find out what properties are available by reading the VBX Vendor's
documentation.

Some of the VBX
properties available

for a particular
control.

CHAPTER 10 SETTING CONTROL PROPERTIES

For example, assume a VBX has a property called 'CellColor,' which
indicates the background color of a grid cell. If the application wants to
know what the current color is, it retrieves the value in the property
called 'CellColor.' Usually, it works the other way, too. If the application
changes the value of 'CellColor' from blue to red, then the VBX updates
the window control and changes the color.

Tip: The Visual Basic Control properties are usually documented
with a leading dot. Drop the dot when accessing it from the
Clarion application.

The section above notes how to set the start-up properties for a control
with the Window Formatter . At other times you’ll want to alter the
properties in executable code, and of course, retrieve a value from a
property after user entry.

❏ To alter properties in executable code, use the property expression
syntax. Access the control’s Visual Basic Custom Control properties
by referring to the specific property in quotes:

?vbxVariable { 'VBProperty' } = value

❏ To retrieve the current value of a Visual Basic Custom Control
property, use the property expression syntax again:

value = ?vbxVariable { 'VBProperty' }

Monitoring .VBX Events

Besides properties, the other “channel” by which the .VBX “talks” to
your application is via events. A .VBX might trigger an event, for
example, if the end user double clicks on a particular part of it. When the
event occurs, the .VBX generates a string (up to 255 characters) naming
the event. The .VBX vendor’s documentation lists the possible events the
control may generate.

Your application can examine the event, and take appropriate action by
interrogating PROP:VBXevent. When working with the Application
Generator, you place code similar to the example below at either the
embed point labelled “Control Event Handling, before generated code
(VBXevent)” or “Control Event Handling, after generated code
(VBXevent).” For example, the following can take place in the ACCEPT
loop of a dialog box containing a .VBX control.

SomeString = ?vbxVariable{PROP:VBXevent}
IF SomeString = ‘UserWantsToDoX’
 SomeProcedure
END

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

1111

UUUUUSINGSINGSINGSINGSING THETHETHETHETHE L L L L LISISISISISTTTTT B B B B BOOOOOXXXXX F F F F FORMAORMAORMAORMAORMATTTTTTERTERTERTERTER

The List Box Formatter is a flexible
tool for visually creating and
modifying the appearance and
function of your list boxes. It displays
a sample to show how your editing
affects the appearance of the control.

Sample list boxes and tips
for extending the
functionality of your list
box controls.

The List Field Properties
Group tab allows you to
define two or more fields
which share common
formatting elements.

The List Field Properties
dialog allows you to format
a single column at a time.

The List Box Formatter
presents a sample showing
how the list box under
construction looks.

CHAPTER 11 USING THE L IST BOX FORMATTER

The List Box Formatter provides a wide degree of flexibility to create
and modify your list boxes, drop down list boxes, and combo boxes.

Once you specify a QUEUE to provide the data for the list (done
automatically when specifying a browse template), the List Box
Formatter allows you to customize your list in the following ways:

◆ You can set the number of columns, with or without resizeable
borders.

◆ You can specify that a record (row) from the QUEUE occupies more
than one list box row.

◆ You can add horizontal scrollbars for each column or group of
columns in the list box.

◆ You can specify the focus on rows or individual “cells,” spreadsheet
fashion.

◆ You can specify headers for the list box columns.

◆ You can add a special locator control that allows users to quickly
find the item they need.

◆ You can enable selection of multiple rows in the list.

OVERVIEW

A list box, by convention is a read-only display of data. It is scrollable
and may contain many records and fields. It efficiently displays large
amounts of data.

A drop down list box, by convention, is a read-only display of mutually
exclusive selections or choices. It is often scrollable and is called a drop
down list because it initially appears as a single row, but “drops down”
to display multiple rows, like a menu. It forces valid user selections,
provides a visual cue reminding the user that a selection is required,
offers a default selection, and doesn’t take up much screen space.

A combo box, is simply a list box with the ability to accept user input.

When creating a list box control, you define its data source, its
functionality, and its format. Clarion’s development environment divides
these property definitions among several dialogs:

◆ The List Properties dialog specifies a drop down list versus a
regular list, specifies the file or queue that supplies the data, and

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

specifies the general scrolling capability, that is, all the properties of
the list box that are not column-specific. This dialog is discussed in
the previous chapter.

◆ The List Box Formatter dialog lets you add, delete, reorder, and
resize the specific fields or columns that are displayed in the list box.
This dialog is discussed in this chapter.

◆ The List Field Properties dialog defines the appearance and
behavior of individual list box columns. For example, define
individual column headers, widths, and scrolling. This dialog is
discussed in this chapter

◆ The List Field Properties dialog also defines the appearance and
behavior of groups of columns within the list box. For example, you
can spread a header across several columns.

After you’ve started defining your list box with the List Properties
dialog, these are the general steps for completing your list box.

❏ Add columns, one by one, using the List Box Formatter and the
Select Field dialog.

1. From the Window Formatter , RIGHT-CLICK on the list box control,
and choose List Box Format from the popup menu to display the
List Box Formatter dialog.

The List Box Formatter displays a representation of the list box.
Each field appears as a column in the list box, the data represented
by “$” characters for strings, or “<“ and “#” characters for numbers.

2. Press the Populate button to add a new field. (When working from
the Text Editor, the Insert button replaces the Populate button).

When working from within the Application Generator, choose a field
from the Select Field dialog. The List Box Formatter reappears,
with the new column added. In the Text Editor, the Select Field
dialog does not appear; you go directly to the List Field Properties
dialog, so skip step 3.

3. Press the Properties button.

 The List Field Properties dialog appears. Use this dialog to define
column headers, widths, borders, scrolling, etc. Formatting for the
first column becomes the default format for subsequent columns.

4. Specify the column width in dialog units.

Provide about four dialog units for each character to be displayed.

5. Specify a picture token for the data.

CHAPTER 11 USING THE L IST BOX FORMATTER

The picture token determines how the data is displayed. For
example, the picture token @P(###) ###-####P displays a phone
number as (555) 555-5555.

6. Specify optional formatting.

You can choose the justification and set indentation. You can specify a
column header, borders, underlining, and more.

7. Specify optional functionality.

For example, add a scroll bar for a single column. Allow column
searches. You can specify resizeable borders, that allow the end user
to adjust column widths with the mouse.

8. Press the OK button to return to the List Box Formatter dialog.

For each modification you make to the list box on screen, the List
Box Formatter creates the appropriate FORMAT attribute for the
LIST statement that defines your list box. The LIST statement, in
turn, resides in the WINDOW structure. See the Language Reference
for a complete explanation.

❏ Optionally group fields.

1. In the List Field Properties dialog, select the Group tab .

This specifies that the previous field and the next field you add to the
list box share formatting elements.

2. Specify the group heading text.

The simplest shared element is a common header. The group header
appears directly above the field headers for the two fields.

3. Optionally specify additional formatting.

You can, for example format the fields so that no separator appears
between the members of the group, but a separator does appear at the
end of the group. To do so, be sure the Right Border box is
unchecked for the first field(s) in the group, and is checked only for
the last.

4. Press the OK button to close the List Field Properties dialog.

❏ Optionally “stack” multiple fields in a single row of a single column
within the list box.

1. On the Field tab in the List Field Properties dialog, check the Last
on Line box.

This option is equivalent to adding a carriage return immediately after
the current field. The next field within the group appears directly below
the current field, within the same column—under the group header.

2. Press the OK button to close the List Field Properties dialog.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

3. In the List Box Formatter dialog, press the Populate (or Insert)
button.

This allows you to enter the next field. Format the next field
following the same steps as for the previous field. Then continue
formatting until all fields are added to the list box.

UNDERSTANDING THE LIST BOX FORMATTER

The List Box Formatter displays a representation of the list box under
construction. The Field Number: prompt near the top of the List Box
Formatter shows you which field is currently selected. Each field
appears as a column in the list box, the data represented by “$”
characters for strings, or “<“ and “#” characters for numbers. If any field
contains a header, a header row appears over the list.

You format the fields one by one in the List Field Properties dialog,
which updates the sample list box. For your convenience, the List Box
Formatter provides a horizontal scroll bar, whether or not you specify
one in the List Properties dialog.

The List Box Formatter does not display a vertical scroll bar, even if
you checked the Vertical box in the List Properties dialog. However,
the vertical scroll bar does appear at run time, if the queue contains more
items than will fit in the list box.

The List Box Formatter dialog buttons allow you to add, delete, reorder,
resize, and reformat fields in the list box.

❏ To add a field to the list box, press the Populate (or Insert) button.

When the List Box Formatter is called from the Application
Generator, the Populate button displays the Select Field dialog.
From there, you can select any data dictionary field or memory
variable for use as a list box column. The generated code puts the
selected data dictionary fields into a queue for use in the list box.

The List Box
Formatter, showing a

“sample” with two
groups.

CHAPTER 11 USING THE L IST BOX FORMATTER

When the List Box Formatter is called from the Text Editor instead
of the Application Generator, the Insert button replaces the
Populate button. You are responsible for building the queue that fills
the list box.

❏ To remove a field from the list box, press the Delete button.

❏ To display the help file, press the Help button.

❏ To cancel the formatting changes, press the Cancel button.

❏ To accept the formatting changes, press the OK button.

❏ To move the selected field to the left, CLICK the ←←←←← button, or press
SHIFT+LEFT ARROW.

If the selected field is leftmost in a group, the ←←←←← button moves the
field out of the group, but the order of the fields is unaffected.
Conversely, the ←←←←← button moves the selected field into a group at its
immediate left, and the order of the fields is unaffected.

❏ To move the selected field to the right, CLICK the →→→→→ button, or press
SHIFT+RIGHT ARROW.

If the selected field is rightmost in a group, the →→→→→ button moves the
field out of the group, but the order of the fields is unaffected.
Conversely, the →→→→→ button moves the selected field into a group at its
immediate right, and the order of the fields is unaffected.

❏ To format a field, press the Properties button.

The List Field Properties dialog allows you to specify the width of
the column, a picture token, heading text, plus other options such as
a horizontal scroll bar for the selected field. Additionally, it allows
you to “group” fields, which places an extra header across the top of
the grouped columns, to visually indicate the fields are linked. The
dialog is described in detail, below.

The List Field Properties Dialog

Press the Insert or Populate button to add a field to the list box, then
format it in the List Field Properties dialog. For each choice you make
in the dialog, the List Box Formatter creates the appropriate FORMAT
attribute for the LIST statement that defines your list box.

General Tab

The dialog allows you to set the following Data formatting options.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Width Specify the width in dialog units for the column.
By default, the Formatter sets the value to four
times the number of characters specified in the
field picture in the data dictionary. For variables,
the default is four times the number of
characters in the picture token defined for it.

Tip: As a rough guide, allow four dialog units for an average
character. For example, if you want a column 10 characters
wide, type 40 in the Width field.

After you’ve placed a field, the List Box
Formatter dialog allows you to drag the column
separators to resize a column width. The cursor
changes when you place it on top of the
separator, to indicate you can resize it.

The data width you set appears within the
FORMAT string for the field, preceding the
Justification code, as in “40L.”

Picture Specify the picture token for the data. The List
Box Formatter displays the data according to
the picture token. For example, the picture token
@P(###) ###-####P displays a phone number
as (555) 555-5555.

The picture token you specify appears in the
FORMAT string.

Justification Choose from the drop down list to specify left,
right, center or decimal. Decimal justification
aligns decimal numbers by their decimal points.

The justification appears in the FORMAT string
following the data width, as in “40R.”

Specifying the List
Field Properties.

CHAPTER 11 USING THE L IST BOX FORMATTER

Indent Optionally specify an indent, in dialog units, for
the list box data. Indent moves the data by the
number of dialog units specified, in the opposite
direction to the justification. An indent of two
(2) on left justified data improves list box
readability.

The indent appears within the FORMAT string
surrounded by parentheses and preceded by a
letter indicating the justification, as in “L(8).”

Color Cells Checking this box displays this column with a
solid or filled background at runtime.

Color cells appears as an asterisk “*” in the
FORMAT string.

Icons Checking this box creates an area to the left of
the data in the column that displays a graphic
icon that you supply.

Adds an “I” to the FORMAT string.

Tree Checking this box displays this column in a
hierarchical tree diagram. See Relation Tree in
the Using Control, Code, and Extension
Templates chapter. See also Relation Tree in the
on-line help.

Adds a “T” to the FORMAT string.

Show Level Checking this box causes each descending level
of the Tree hierarchy to be indented.

Unchecking this box appends “(I)” to the “T” in
the FORMAT string, resulting in “T(I)” to
suppress indention.

Show Lines Checking this box adds connecting lines
between related items in the tree diagram.

Unchecking this box appends “(L)” to the “T” in
the FORMAT string, resulting in “T(L)” to
suppress lines.

Show Boxes Checking this box adds expand (+) and contract
(-) boxes to the tree diagram.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Unchecking this box appends “(B)” to the “T” in
the FORMAT string, resulting in “T(B)” to
suppress boxes.

Field Tab

Heading Text Optionally specify header text for the column.
The header appears as a gray row above the list
box data items. To specify no header, leave this
field blank. If any field included in the list box
has a header, a header appears across the entire
list box; those fields with no header text will
have a blank header.

The heading appears within the FORMAT string
enclosed in tilde (~) characters, as in “~My
Header~.”

Justification Choose from the drop down list to specify left,
right, center or decimal header justification.

This appears within the FORMAT string
following the header, as in “~My Header~L.”

Indent Optionally specify an indent, in dialog units, for
the heading text. Indent moves the data by the
number of dialog units specified, in the opposite
direction to the justification. An indent of two
(2) on left justification improves list box
readability.

This appears within the FORMAT string
following the header, as in “~My Header~L(8).”

CHAPTER 11 USING THE L IST BOX FORMATTER

Scroll Bar Check this box to specify a horizontal scroll bar
for this column only. If the overall list box
already has a scroll bar, the column scroll bar
appears above the list box scroll bar.

Size Specifies, in dialog units, how far the column
scrolls. This value determines the width of the
scrolling area that is not displayed in the list
box.

For example, if your data item is fifty (50)
characters, and your list box column width is
about forty (40) characters (one hundred sixty
(160) dialog units), you should specify a Size of
fifty (50). Fifty (50) additional dialog units are
enough to display the ten characters that extend
beyond the width of the list box column.

The scroll bar and size appear in the FORMAT
string together, as in “S(4).”

Underline Check the Underline box to add the underline
style to the list box text. In effect, this creates a
bottom border for each row in the column,
giving your list box a spreadsheet or cell-like
appearance.

The FORMAT string includes the underscore
character, immediately preceding the header
text, as in “_~My Header~.”

Right Border Check the Right Border box to specify column
separators between fields in the list box at run
time.

The FORMAT string includes the pipe symbol (
|), immediately preceding the header text, as in
“|~MyHeader~.”

Resizeable Check the Resizeable box to specify that the
user can resize the width of the columns at run
time.

The FORMAT string includes the “M”
character, immediately preceding the header text
as in “M~MyHeader~.”

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Tip: At runtime, the PROP:Format property always contains the
current format of the list box, including any user changes. To
save the user’s column sizes, use GETINI and PUTINI to save
and restore the PROP:Format values:

PUTINI(‘List Settings’,‘UserList’,?List{PROP:Format},”MYAPP.INI’)

Fixed Check the Fixed box to specify that the column
always remains visible in the list box.

The FORMAT string includes the “F” character,
immediately preceding the header text as in
“F~MyHeader~.”

Last on Line Checking this box specifies that the next field in
the group will appear immediately below the
current field. In effect, it stacks two or more
fields within a single selection, below the group
header.

The FORMAT string includes the “/” character,
immediately preceding the header text as in “/
~MyHeader~.”

Locator Check the Locator box to specify that this
column works with a locator entry control.
When the user types a character in the locator
entry control, the list box scrolls to the first
matching entry in the column.

The FORMAT string includes the “?” character,
immediately preceding the header text as in
“?~MyHeader~.”

Creating Column Groups

List box groups contain two or more fields which share common
formatting elements, such as a header, or two fields which appear
“stacked” within a single selection. Specify a group header to visually
link adjacent fields. Check the Last on Line box on the first field to set
up field “stacking.”

CHAPTER 11 USING THE L IST BOX FORMATTER

Create a group by selecting the first field in the group, then selecting the
Group tab in the List Field Properties dialog. The next field you
choose from the Select Field dialog or the next field in the QUEUE
becomes the next member of the group. Alternatively, use the ←←←←← and →→→→→
buttons on the List Box Formatter to move fields into and out of an
existing group.

From the List Field Properties dialog, you can specify a group header
that appears above the column headers. Because the right border attribute
is set separately from the fields, you can create a header which appears to
stretch across columns.

With creative formatting, you can use group headers to visually link
related data residing in different columns. For example, you can place
“Name” in the group header for column one, then “First” and “Last” in
the header fields for the first two fields. You can also use a group header
to break up the header text into two lines when the column label is
longer than the column width.

Group Tab

The following items appear in the Group tab List Field Properties
dialog:

Heading Text Optionally specify header text for the group.
The header appears as a gray row above the list
box data items. To specify no header, leave this
field blank. If any field included in the list box
has a header, a header appears over each field in
the list box; those fields with no header text will
have a blank header.

Justification Choose from the drop down list to specify left,
right, center or decimal justification.

Specifying a Group
Header called
“Vegetables.”

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Indent Optionally specify an Indent , in dialog units, for
the heading. Indent moves the data by the
number of dialog units specified in the opposite
direction to the justification. An indent of two
(2) on left justification improves list box
readability.

Scroll Bar Check the Scroll Bar box to specify a single
horizontal scroll bar for the entire group. If the
overall list box already has a scroll bar, the
group scroll bar appears above the list box scroll
bar. If individual columns in the group have
scroll bars, they are superseded by the group
scroll bar.

This is an effective way to present related list
items to the user in an organized manner.

Size Specify the range of the scroll bar. This value
determines the width of the scrolling area that is
not displayed in the list box.

For example, if your data item is fifty (50)
characters, and your list box column width is
about forty (40) characters (one hundred sixty
(160) dialog units), specify a Size of fifty (50).
Fifty (50) additional dialog units are enough to
display the ten characters that extend beyond the
width of the list box column.

The scroll bar and size appear in the FORMAT
string together, as in “S(4).”

Underline Check the Underline box to add the underline
style to the list box text. In effect, this creates a
bottom border for each row in the column,
giving your list box a spreadsheet or cell-like
appearance.

The FORMAT string includes the underscore
character, immediately preceding the header
text, as in “_~My Header~.”

Right Border Check the Right Border box to specify column
separators between fields in the list box at
runtime.

CHAPTER 11 USING THE L IST BOX FORMATTER

The FORMAT string includes the pipe symbol (
|), immediately preceding the header text, as in
“|~MyHeader~.”

Resizeable Check the Resizeable box to specify that the
user can resize the width of the group at run
time.

The FORMAT string includes the “M”
character, immediately preceding the header text
as in “M~MyHeader~.”

Fixed Check the Fixed box to specify that the group
always remains visible in the list box.

The FORMAT string includes the “F” character,
immediately preceding the header text as in
“F~MyHeader~.”

Creating a Header Above Two Adjacent Columns

FORMAT('[60L(2)M ~First Name~L(0)@S12@60L|M ~Last
Name~L(2)@S12@]|M ~Name~[43R|M ~Beans~L@n5@43R|M ~Peas~L@n5@43R|M
~Broccoli~L@n5@43R|M ~Artichokes~L@n5@40R|M ~Squash~L@n5@]|M
~Vegetables~')

1. In the List Box Formatter , press the Populate (or Insert) button to
add a field to the list box.

 The Select Field dialog appears.

2. Use the Select Field dialog to select the field to add to your list box.

3. Press the Properties button to open the List Field Properties
dialog.

Use the List Field Properties dialog to format the column normally.

4. In the List Field Properties dialog, select the Group tab.

5. Press the OK button when asked if you want to create a new group.

6. In the Heading Text field, type the group heading text.

 This text is shared by all the fields in the group. By default, it is
centered above the group, however, you may specify other
justifications.

A sample list box
control with Group

Headers.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

7. Press the OK button to close the List Field Properties dialog.

The List Box Formatter reappears.

8. Press the Populate (or Insert) button in the List Box Formatter
dialog.

 The Select Field dialog appears.

9. Use the Select Field dialog to select the field to add to your list box.

The field is added to the group established in the previous dialogs.

10. Press the Properties button to open the List Field Properties
dialog.

Use the List Field Properties dialog to format the column normally.

11. Press the OK button to close the List Field Properties dialog.

The List Box Formatter reappears. Additional fields added in this
fashion will be added to the group. To “end” the group, press the →→→→→
button. This moves the last field added to the group, out of the
group.

Stacking Two Fields in the Same Column

FORMAT('[60L|M~First~@S12@/60L|M~Last~@S12@]|M ~Name~C(2)[43R|M
~Beans~L@n5@43R|M ~Peas~L@n5@43R|M ~Broccoli~L@n5@43R|M
~Artichokes~L@n5@40R|M ~Squash~L@n5@]| ~Vegetables~C(2)S(15)')

1. In the List Box Formatter , press the Populate (or Insert) button to
add a field to the list box.

 The Select Field dialog appears.

2. Use the Select Field dialog to select the field to add to your list box.

3. Press the Properties button to open the List Field Properties
dialog.

4. In the List Field Properties dialog, check the Last on Line box.

5. In the List Field Properties dialog, select the Group tab.

6. Press the OK button when asked if you want to create a new group.

7. Press the OK button to close the List Field Properties dialog.

The List Box Formatter reappears.

The same sample list
box showing a
“stacked” row.

CHAPTER 11 USING THE L IST BOX FORMATTER

8. In the List Box Formatter , press the Populate or Insert button to
add a second field to the list box.

The field is added to the group established in the previous dialog.

9. Use the List Field Properties dialog to format it normally.

10. Press the OK button to close the List Field Properties dialog.

The List Box Formatter reappears. Additional fields added in this
fashion will be added to the group. To “end” the group, press the →→→→→
button. This moves the last field added to the group, out of the
group.

Grouping Fields With a Group Scroll Bar

FORMAT('[60L(2)M~ First Name~L(0)@S12@60L|M ~Last Name~L(2)@S12@]|M
~Name~[43R|M ~Beans~L@n5@43R|M ~Peas~L@n5@43R|M
~Broccoli~L@n5@43R|M ~Artichokes~L@n5@40R|M ~Squash~L@n5@]|M
~Vegetables~S(35)')

1. In the List Box Formatter , press the Populate (or Insert) button to
add a field to the list box.

 The Select Field dialog appears.

2. Use the Select Field dialog to select the field to add to your list box.

3. Press the Properties button to open the List Field Properties
dialog.

4. In the List Field Properties dialog, select the Group tab.

5. Press the OK button when asked if you want to create a new group.

6. On the Group tab, check the Scroll Bar box.

7. Press the OK button to close the List Field Properties dialog.

The List Box Formatter reappears.

8. In the List Box Formatter , press the Populate or Insert button to
add a second field to the list box.

This field is added to the group established in the previous dialog.

9. Use the List Field Properties dialog to format it normally.

10. Press the OK button to close the List Field Properties dialog.

Adding a scroll bar for
the “Vegetables”

group. The data is
random characters

and n umbers.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

The List Box Formatter reappears. Additional fields added in this
fashion will be added to the group. To “end” the group, press the →→→→→
button. This moves the last field added to the group, out of the
group.

Tip: Most likely, you’ll leave the Right Border box unchecked for
the first fields in the group, and checked for the last field in the
group. This separates the group as a whole from other fields in
the list box.

LIST BOX EVENTS AND OTHER FUNCTIONALITY

If you stick to the templates, you may never need to manage the list box
events. The Browse template, for example, allows you to name the
Update procedure. This relieves you of the coding chores required to
monitor for events like DOUBLE-CLICKS. However, if you need to extend
the functionality of the list box to allow drag and drop, or multiple
selections, you may need to add statements to the appropriate ACCEPT
loop, to check for specific list box events.

Tip: Some of the following sections have little to do with the List
Box Formatter. They reside in this chapter, however, because
we thought you would look here for them first.

Trapping a Double Click on a List Box

Trapping a DOUBLE-CLICK on a list box is built into the Clarion Browse
templates. To trap a DOUBLE-CLICK on a list control in hand-code:

1. Establish an ALRT(double-click) on the list control.

2. Trap for EVENT:AlertKey on the list control.

3. Trap for the MouseLeft2 keycode, as in the following example:
ACCEPT
CASE FIELD()
OF ?List
CASE EVENT()
OF EVENT:AlertKey
IF KEYCODE() = MouseLeft2
CurrentSel = CHOICE(?List1) ! Get current selection in list box
GET(TheQueue, CurrentSel) ! Get corresponding data from queue

. . . .

The above code finds out what item the user DOUBLE-CLICKED on using the
CHOICE() function, then uses the GET() function to retrieve the item
from the QUEUE.

CHAPTER 11 USING THE L IST BOX FORMATTER

You can add the two lines of code within the above IF structure to the
Browse Double Click Handler embed point to handle DOUBLE-CLICKS for
lists populated with the BrowseBox control template in the Application
Generator.

Adding Drag and Drop Capability to the List Box

Drag and Drop capability for lists means the user can select an item in a
list box, hold down the left mouse button, “drag” the item to another
control, release the mouse button to “drop” the item on the control,
which can look at the data that was “dropped” on it, and then do
something with it.

Adding Drag and Drop to a Clarion for Windows list box is a simple
operation. This section provides an example of dragging an item from
one list box to another, within the same application. You can also “Drag
and Drop” to or from another application—for example, File Manager—
see the Language Reference for more details.

To implement Drag and Drop, you must add the DRAGID and DROPID
attributes to the controls. You can add either or both to a control. The
simplest, quickest way to do this is with Property Syntax statements.
Assume for this example that the field equate labels for the two list
boxes are ?FromList and ?ToList. Assume you want the end user to be
able to drag from ?FromList to ?ToList.

Two List Boxes, both
of which can be either

Drag and Drop hosts
or targets. The Cursor

changes to a down-
arrow when selecting
an item in the top list.

It changes to a “No
Smoking” icon over

areas where it can’t be
dropped.

Finally, the cursor
changes to a down

arrow, indicating an
area where it can be

dropped.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

❏ Set up ?FromList as a drag host:

1. RIGHT-CLICK on the list control and choose Properties from the
popup menu.

2. Select the Extra tab.

3. In the Drag ID field, type “FromList.”

4. Press the OK button.

This sets the Drag ID signature which identifies the source of any
“drag” operation from this control.

❏ Set up ?ToList as a drop target:

1. RIGHT-CLICK on the list control and choose Properties from the
popup menu.

2. Select the Extra tab.

3. In the Drop ID field, type “FromList.”

4. Press the OK button.

This sets the Drop ID signature which specifies that the list will
accept any “drop” operation with a Drag ID signature of “FromList.”

❏ Add drag functionality to the drag host, that is, detect a drag event
and provide something to drag and drop:

1. RIGHT-CLICK on the FromList control and choose Embeds from the
popup menu.

2. Locate the “Control Event Handling, before generated code;”
event:Drag embed point and embed the following code:

IF DRAGID() ! Doesn’t matter who dropped it for now
SETDROPID(‘string to drag and drop’) ! Passing a simple string

END

This code detects a drag event—at the time the user releases the
mouse button over a valid drop target—and places a string to drag
with the SETDROPID function.

You can just as easily use the CHOICE() and GET() functions to
retrieve an item from the local QUEUE for the first list box, then
place the item in a global QUEUE. Then, upon detecting a drop
event in the second list box, you could ADD from the global
QUEUE to the local QUEUE for the second list box.

❏ Add drop functionality to the drop host, that is, detect a drop event
and retrieve whatever was dropped:

CHAPTER 11 USING THE L IST BOX FORMATTER

1. RIGHT-CLICK on the ToList control and choose Embeds from the
popup menu.

2. Locate the “Control Event Handling, before generated code;”
event:Drop embed point and embed the following code:

MyField = DROPID() ! Retrieve the passed string
CallMyProcedure ! Handle the rest in procedure

This code detects a drop event—at the time the user releases the
mouse button over the drop target—and retrieves the “dropped”
string with the DROPID function.

You can just as easily use the CHOICE() and GET() functions to
retrieve an item from the local QUEUE for the first list box, then
place the item in a global QUEUE. Then, upon detecting a drop
event in the second list box, you could ADD from the global
QUEUE to the local QUEUE for the second list box.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

1212

UUUUUSINGSINGSINGSINGSING THETHETHETHETHE R R R R REPOREPOREPOREPOREPORTTTTT F F F F FORMAORMAORMAORMAORMATTTTTTERTERTERTERTER

Visually lay out your applications’s
reports. The Report Formatter
automatically generates the REPORT
data structure, which handles page
formatting and monitors page
overflow.

Specify the report
name, default
measurement unit, and
page orientation in the
Report Properties
dialog.

Specify default margins
in the Position dialog.

Divide the report into
sections with a Group
BREAK structure.

Easily populate the
report with text,
variables, lines, and
graphics. Design report
headers, detail, and
footers.

CHAPTER 12 USING THE REPORT FORMATTER

Using the Report Formatter , you visually lay out your application’s
reports. The Report Formatter automatically generates and places the
structures for the report elements in the REPORT data structure.

This chapter will:

◆ Tell you how to call the Report Formatter to create or edit a report.

◆ Provide an overview of the parts or sections of a report.

◆ Discuss page layout considerations, such as orientation and
automatic widow and orphan handling.

◆ Tell you how to place both data and graphic controls on the page.

◆ Tell you how to set control properties so your report can
automatically calculate totals and averages by group, page, or grand
total.

OVERVIEW: REPORT PROCESSING

Before learning how to create a report using the Report Formatter , it’s
important to understand how Clarion executes a report—in other words,
the division of labor between the print engine and your source code, and
the order in which Clarion processes all the sections of your report. Each
section of the report is a data structure, which in turn is contained in the
REPORT structure.

Smart Processing

The REPORT data structure contains all the information necessary for
formatting and printing each page. Clarion’s internal “print engine”
automatically handles page overflow management, including widow and
orphan control. This frees you from worrying about the “mechanics” and
makes the Clarion executable code to print a report simple and clean.

The following example shows how a total of six lines of executable code
can access the file and print a fully-formatted listing of all Customers.
Since the Report Formatter writes the entire REPORT data structure,
this is all the code the programmer has to write:

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

OPEN(CustReport) !Open report for processing
SET(Cus:NameKey) !Top of file, alpha order
LOOP !Process the entire file
NEXT(CustomerFile) !one record at a time
IF ERRORCODE() THEN BREAK. !Check for errors

PRINT(Rpt:Detail) !Tells the REPORT struc to do the work.
END

Of course, if you’re using the Application Generator, you don’t even
have to write that much, since the code is written for you! In the example
above, the PRINT statement prints a DETAIL structure for each record
in the file retrieved with the NEXT statement inside the LOOP.

The REPORT data structure contains the items that belong on the page,
plus the attributes that determine how they appear there. Since you
visually design these in the Report Formatter , the code example above
really is all you have to do to print the report.

The PRINT statement automatically initiates the page overflow
handling. This means that when the LOOP goes through enough records
to fill up the page, it automatically generates any other structures on the
page—the FOOTER, for example, before it sends the entire page to the
print spooler.

REPORT Structures

Each report contains sections, which are also Clarion data structures.
These sections are the FORM, HEADER, BREAK, DETAIL, and
FOOTER.

◆ The FORM structure prints as a “background layer.” Typically, you
may display “overlays” such as graphics and field labels in the
FORM layer, then print the actual data in the DETAIL. The FORM
content remains constant from page to page.

◆ The HEADER structure traditionally prints at the top of each page of
the report. Typically, you place the report title, graphics and other
“introductory” elements in the HEADER.

◆ The DETAIL structure is the “body” of the report. It contains the
basic data, either in table or record format.

◆ The FOOTER structure traditionally prints at the bottom of the
report. Typically, you may place a page number, or totals in the
FOOTER.

◆ A Group BREAK structure can contain its own HEADER, DETAIL,
and FOOTER structures, plus nested BREAK structures with their
own HEADER, DETAIL, FOOTER structures. The print engine

CHAPTER 12 USING THE REPORT FORMATTER

composes these sections whenever the group BREAK variable
changes. BREAKs are typically used to display section summaries,
for example, department totals.

Clarion for Windows provides complete flexibility in placing the FORM,
page HEADER, and page FOOTER structures at any position on the
page. DETAIL structures print in the area defined for them by the
REPORT’s AT attribute—the detail print area—and are printed relative
to the end of the last section printed in the detail print area. The group
HEADER and FOOTER also print inside the detail print area, at an
offset relative to the last detail to print.

Following is an example of a REPORT structure with empty headers,
footer, and form, a break on “CustNumber”, and several variable strings
in the detail. This structure was generated by the Report Formatter .

Report REPORT,AT(1000,2000,6000,7000),PRE(RPT),FONT('Arial',10,,),THOUS
 HEADER,AT(1000,1000,6000,1000)
 END

CustBreak BREAK(CUS:CustNumber)
 HEADER,AT(,,,1000)
 END

Detail DETAIL
 STRING(@n4),AT(125,52),USE(CUS:CustNumber)
 STRING(@S20),AT(125,208),USE(CUS:Company)
 STRING(@S20),AT(125,365),USE(CUS:Address)
 STRING(@S20),AT(125,531),USE(CUS:City)
 STRING(@S2),AT(125,688),USE(CUS:State)
 STRING(@n5),AT(125,844),USE(CUS:ZipCode)
 END
 END
 FOOTER,AT(1000,9000,6000,1000)
 END
 FORM,AT(1000,1000,6000,9000)
 END
 END

Processing Order

As mentioned above, a REPORT data structure is comprised of five sub-
structures: FORM, HEADER, DETAIL, FOOTER, and BREAK. Each
BREAK structure can contain its own HEADER, DETAIL, and
FOOTER.

Normally, you want to design reports with only one DETAIL. When you
generate reports using the Application Generator and Report Formatter ,
they will have only one DETAIL. This DETAIL should be inside any
group BREAK structure you create. Alternatively, When you generate
reports using the Text Editor and Report Formatter , there is a DETAIL
for each BREAK. You can delete any DETAILs not used.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Once you know the order in which the report sections generate at print
time, you can understand how to use them better. For the following
example, assume a report containing one BREAK structure, with a
DETAIL section inside it. Upon execution of the PRINT command:

1. The print engine composes the FORM, but does not send it to the
print spooler yet. The FORM section generates only once; the print
engine does not recompose it for additional pages.

2. The print engine composes the page HEADER.

3. The print engine composes the group HEADER.

4. The application composes the DETAIL section (within the BREAK)
as many times as will fill the first page, continuously checking for
group BREAKs.

If a BREAK occurs on the page:

5. The print engine composes the group FOOTER for the first group.

6. The print engine composes the group HEADER for the next group.

7. The application generates the DETAIL section for the next group of
records, continuously checking for further group BREAKs.

At the bottom of the page:

8. The print engine checks for widows, increments the page count, and
checks the next page for orphans.

9. The print engine composes the page FOOTER.

10. The print engine sends the entire first page to the print spooler.

11. For page two, since the FORM section was composed already, it
does not get regenerated, though it will print on the page. The print
engine proceeds directly to the page HEADER.

12. The application repeats the procedures above for this and all
additional pages.

Flexibility

The page-oriented nature of the Report Formatter is the key to its
flexibility. The print engine composes each page in its entirety before
sending it to the printer. This means you may arrange the parts of the
report into any page layout you wish.

You can place the FORM, page HEADER, and page FOOTER structures
anywhere on the page, within certain limitations. Their page placement
does not affect the order that the application generates these sections of
the report.

CHAPTER 12 USING THE REPORT FORMATTER

That means you can physically place a page FOOTER above a page
HEADER. Since the FOOTER generates only after the report processes
all the records on the page, this allows you, for example, to place a page
total above the records on the page.

You set the position and size of the DETAIL structure as an offset
relative to the last DETAIL printed. The print engine prints each
DETAIL from page top to page bottom. If the DETAIL is narrow enough
so that more than one fits across the width of the page, they print left to
right, then top to bottom. Group BREAK structures—group HEADER,
group DETAIL and group FOOTER—all print as offsets within the
DETAIL area, one after the other.

You can do some fancy footwork in cooperation with the print engine.
For example, because the DETAIL structure must be printed with the
PRINT statement, you can use embedded source to place conditional
statements within your executable code, to print one DETAIL for one
condition, and another for a different condition.

As long as you remember the order in which the print engine generates
each section, which determines the current record and the values of the
totals, tallies and other operations on the fields in each structure, you can
build in a great deal of flexibility within the REPORT data structure, and
let the print engine worry about fitting it all onto the page at runtime.

OVERVIEW: THE REPORT FORMATTER

Design your report visually—by placing text, variables, and graphics—
on a representation of a page. Rulers, alignment tools, and grid snap
allow you to place these items precisely.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Page Oriented Printing

By Page Oriented, we mean that Clarion’s print engine composes
everything on the page, and only after everything is processed does it
send the page to the printer. This may be a radical change for
programmers switching from DOS report writers, which send output to
the printer line by line.

Page oriented printing provides these benefits:

◆ You can place totals anywhere on the page. If the total is in a page
FOOTER, you can move the FOOTER anywhere, including over the
entire page.

◆ You can easily print graphic elements.

◆ You can place a “preprinted” graphic form in the FORM structure,
then format the report so that data prints inside the areas specified
for each data element.

◆ Clarion for Windows handles page breaks and group breaks
automatically, even allowing you to specify how to handle “widow”
and “orphan” details.

◆ You can easily build in a “Print Preview” command in your
applications. In fact, to implement it in the Application Generator,
you just check a box in the Report Properties dialog.

Rulers

Font/Text Control

Alignment Tools

Controls Tools

Grid Snap

CHAPTER 12 USING THE REPORT FORMATTER

Opening the Report Formatter

This section describes how to open the Report Formatter , from both the
Application Generator and from the Text Editor. It also discusses how to
set up your database beforehand, to ensure that group data prints in the
right order.

In general, you call the Report Formatter either to create a new report,
or to edit an existing report. The Report Formatter allows you to
visually place your report elements on the page. It then automatically
generates the REPORT data structure. You can access the Report
Formatter from the Application Generator or from the Text Editor.

❏ To open the Report Formatter from the Application Generator:

1. Choose Procedure ➤ New from the menu.

 The Select Procedure Type dialog appears

2. Choose the Report template, uncheck the Use Procedure Wizard
box, and press the Select button.

 The Procedure Properties dialog appears

3. Press the Report button.

The Report Formatter appears. You’re now ready to define the
report by section, specify headers, detail, and footers, and add
controls.

❏ To create a new report from the Text Editor:

1. Open a source code document

2. Locate a blank line in the data section and place the cursor there.
This is where the Report Formatter places the Clarion language
statements which create the report.

3. Choose Edit ➤ Format Structure from the menu. You may also
press the keyboard accelerator, CTRL+F.

4. When the New Structure dialog appears, choose Report .

The Report Formatter appears. You’re now ready to define the
report by section, specify headers, detail, and footers, and add
controls.

Tip: To edit an existing report from the Text Editor, open the
source code file and place the cursor on any line within the
REPORT structure, then choose Edit ➤ ➤ ➤ ➤ ➤ Format Structure
from the menu, or press CTRL+F.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Views

Band View

When you first open the Report Formatter , your report appears in Band
View. That is, each section, HEADER, DETAIL, FOOTER, and FORM,
appears in a separate band inside the window.

Band View features What You See is What You Get (WYSIWYG) editing
one section at a time. You may specify that sections print side by side or
even overlap on the page, but in band view, each section appears in
separate band, and each band appears in its proper hierarchical order
(grouped within any BREAK structures).

❏ To quickly determine each section’s position, look at the rulers. Each
band has its own vertical (Y) ruler, set according to your default
measurement units (see below). The X ruler shows the position
relative to the left edge of the page. The Y rulers show the
positioning relative to the top of the band.

❏ To identify a band’s contents, look at its mini caption bar. This is
particularly useful when you add group breaks—the name of the
variable the group breaks on appears on the band’s caption.

❏ To control the band’s display, use its restore button. This appears at
the right side of the caption bar, and toggles the band open and
closed. The band’s caption bar is always available.

❏ To close all the bands at once, choose View ➤ Expand Bands from
the menu.

Rulers

Mini Caption Bar

Restore Button

CHAPTER 12 USING THE REPORT FORMATTER

Place controls in the bands you wish. The controls may contain constant
strings, variable strings, graphic elements, or, in the case of a group box,
it may even contain other controls.

❏ To select the type of control to place, choose one from the Controls
toolbox, or the Controls menu.

❏ To place the control, CLICK inside the band representing the section in
which you wish it to print.

❏ To modify the control, DOUBLE-CLICK on it, or RIGHT-CLICK on it and
choose Properties from the popup menu.

Other Views

You can edit your report only in Band View. You may view your report
as it appears on the printed page by choosing View ➤ Page Layout
View , or Preview! . Page Layout additionally allows you to move and
resize the HEADER, FOOTER, DETAIL, and FORM sections by
CLICKING and DRAGGING.

❏ To view your report in page layout mode, choose View ➤ Page
Layout from the action bar. Page Layout view allows you to select,
relocate, and resize report sections by dragging their handles.

❏ To preview a sample of how your report will look on the printed
page, choose Preview! from the action bar.

Report Formatter Tools

Controls Toolbox

The Report Formatter contains a floating Controls toolbox, similar to
the one found in the Window Formatter . Simply choose a control from
the toolbox (CLICK on it), then CLICK in a report band to place the control
in the report.

Display or hide the Controls toolbox by choosing Options ➤
Show Toolbox. All the controls in the toolbox are also available from
the Controls menu. See Placing Controls in a Report below. Also see
Setting Report Control Properties below.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Tip: Position the cursor over any tool and wait for half a second. A
tool tip appears telling you the type of control that will be
created by this tool.

Property Toolbox

The Report Formatter’s Property toolbox allows you to quickly
specify the appearance and content of the text on each control within the
report. Control the font, size, style, and content of all your text, using
standard word processor buttons and drop down lists.

Display or hide the Property toolbox by choosing Options ➤ Show
Propertybox. Resize the Property toolbox by placing the cursor on the
border of the box. When the cursor changes to a double headed arrow,
CLICK and DRAG.

Align Toolbox

The Report Formatter’s Align toolbox allows you to quickly,
professionally, and precisely align the controls in your report. Select the
controls to align (CTRL+CLICK allows you to select multiple controls, or
you can “lasso” multiple controls with CTRL+DRAG), then click on the
appropriate alignment tool. All the alignment actions are also available
from the Align menu.

Display or hide the Align toolbox by choosing Options ➤ Show
Alignbox. Resize the Align toolbox by placing the cursor on the border
of the box. When the cursor changes to a double headed arrow, CLICK and
DRAG.

Tip: For most alignment functions, the first controls selected (blue
handles) are aligned with the last control selected (red
handles). That is, the last control selected is the anchor
control. It doesn’t move, the others do.

Tip: Position the cursor over any tool and wait for half a second. A
tool tip appears telling you the type of alignment this tool will
accomplish.

'

CHAPTER 12 USING THE REPORT FORMATTER

Report Controls

Variable String Controls

Variable string controls are the basic unit for printing data on the page.
The Report Formatter places a STRING control in the REPORT data
structure with a variable as the control’s USE attribute. This establishes a
string control that display a variable value rather than a constant value.

By using the USE variable, the application accesses the variable data you
want to print. This may be a memory variable, or a data dictionary field.
The Report Formatter formats the data according to the picture token
you specify.

The process of creating the report DETAIL relies on placing variable
string controls that reference the data you want. You may place the
controls in any layout you wish.

You may place other types of controls on the report page—but you will
probably find that variable strings are the basic building blocks.

Total Fields

A total field is a variable STRING control with the SUM attribute added.
The AVE, CNT, MAX and MIN attributes similarly create averages,
counts, maximum, and minimum fields.

In general, you place total fields in a page or group FOOTER, so that it
can total the records since the beginning of the report, since the
beginning of the page, or since the beginning of the BREAK group. You
can also place a total field in a DETAIL structure to provide a running
subtotal. A tally (CNT) field in the DETAIL can number the records as
they appear on the report.

To specify a total field, DOUBLE-CLICK on a variable string control, then
choose a Total type from the Total type drop down list. Use the Reset
drop down list to reset the total to zero after each page to provide a page
total.

Graphics

A simple graphic element such as a line can visually set off the different
parts of a report, making its printed content much easier for the reader to
understand.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

For example, drawing a line in a group FOOTER separates each new
group from the last. Drawing a shaded box around a group of controls
can link them together visually, just as a box filled with color can link
screen elements together. Placing your company logo in the HEADER of
the report is a simple way to make a report more professional looking.
Use the image control to place graphics in your report.

DESIGNING YOUR REPORT

Because the Report Formatter gives you total freedom to design the
report sections anywhere you wish, plan the type of report you wish to
design. Then, before you place data elements, you should set up the
“basics.” The basics are the page orientation, the page margins, and the
measurement unit.

Report Types

The Report Formatter allows you to freely design reports any way you
wish. Here are a few design types for you to consider, and tips on executing
them:

◆ A tabular report prints each section consecutively, below the
previous. When placing data elements, lay them end-to-end
horizontally across the page.

◆ In a form-style report, which is generally best for printing a single
record to a page, you usually create one column of field labels, and
one column of data elements next to it. You may optionally place the
field labels in the FORM structure and embellish it with graphic
elements such as lines and boxes, creating a “template” inside which
the data prints.

◆ For label reports, (such as a three-across format), you create a
DETAIL placing the data for the label row-by-row. The width of the
DETAIL should be one third the width of the detail print area.

When the print engine prints the DETAIL, if it is less than the page
width, it automatically prints from left to right, top to bottom, on a
“best-fit” basis.

◆ For a mailmerge document, you usually place the name and address
fields in the HEADER, then reserve the DETAIL for a multi-line text
control. This provides word-wrap.

◆ For conditional text, you can create a DETAIL for each variation,
then edit the executable code to PRINT the proper DETAIL

CHAPTER 12 USING THE REPORT FORMATTER

depending on a value from the current record.

Positioning and Alignment

You can set a specific position for the DETAIL as an offset relative to the
last DETAIL printed. This allows you to exactly place, to the thousandth
of an inch, the body of the report. By additionally setting the grid spacing,
you can exercise precise control over every item in the report.

To set the position for the Detail, DOUBLE-CLICK in the Detail band. When
the Detail Properties dialog appears, press the Position tab.

When the Position tab appears, enter new coordinates for X, Y, Height,
and Width . These values set the AT attribute for the DETAIL structure.

The AT attribute on print structures performs two different functions,
depending upon the structure on which it is placed.

When placed on a FORM, or page HEADER or FOOTER (not within a
BREAK structure), the AT attribute defines the position and size on the
page at which the structure is printed. The position specified by the x and
y parameters is relative to the top left corner of the page.

When placed on a DETAIL, or group HEADER or FOOTER (contained
within a BREAK structure) the print structure is printed according to the
following rules (unless the ABSOLUTE attribute is also present):

◆ The width and height parameters of the AT attribute specify the
minimum print size of the structure.

◆ The structure is actually printed at the next available position within
the detail print area (specified by the REPORT´s AT attribute).

◆ The position specified by the x and y parameters of the structure’s
AT attribute is an offset from the next available print position within
the detail print area.

◆ The first print structure on the page is printed at the top left corner of
the detail print area (at the offset specified by its AT attribute).

◆ Next and subsequent print structures are printed relative to the
ending position of the previous print structure:

If there is room to print the next structure beside the
previous structure, it is printed there.

If not, it is printed below the previous.

The values contained in the AT attribute’s x, y, width, and height parameters
default to dialog units unless the THOUS, MM, or POINTS attribute is
also present. Dialog units are defined as one-quarter the average character

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

width by one-eighth the average character height. The size of a dialog unit
is dependent upon the size of the default font for the report. This
measurement is based on the font specified in the FONT attribute of the
report, or the printer’s default font.

Tip: Use the Position dialog to precisely position Detail structures.
When you position a structure on screen, the smallest unit
you can move it is usually 1/96 inch. However, the dialog box
allows you to specify position by thousandths of inches.

To set grid spacing for the entire report, choose Option ➤ Grid Size . In
the Grid Size dialog, enter the space between each dot in thousandths of
inches or your default measurement unit. You may enter a different value
for the X and Y axes.

To turn grid snap on and off, choose Option ➤ Snap to Grid . Grid snap
forces the handles of newly created objects to align themselves along the
dot grid on screen. By default, grid snap is on.

Page Orientation

To change the page orientation, choose Edit ➤ Report Properties , and
press the Paper Size tab. Then check or uncheck the Landscape box.
New reports default to portrait mode. Landscape means the printed text is
parallel to the longest edges of the page. Portrait means the printed text is
parallel to the shortest edges of the page.

Measurement Unit

To change the page measurement unit, choose Edit ➤ Report Properties ,
and press the General tab. Then select dialog units, thousandths of inches,
millimeters, or points from the Units drop down list.

Page Margins

The default margins for the detail print area are one inch from the left
edge of the page, and two inches from the top. This setting leaves space for
a HEADER at the top of the page. You specify the margins on the Position
tab of the respective Report Properties, Page/Group Header Properties,
Detail Properties, and Page/Group Footer dialogs.

Specify the report
name, default

measurement unit,
and page

orientation in the
Report Pr operties

dialog.

CHAPTER 12 USING THE REPORT FORMATTER

❏ To specify the left margin, enter a value in the X pos box.

❏ To specify the top margin, enter a value in the Y pos box.

The units for the margin values are the measurement units you specify in
the Report Properties dialog.

❏ To set the dimensions of each section, type the height and width on
the Position tab:

❏ To specify the height, enter a value in the Height box.

❏ To specify the width, enter a value in the Width box.

Print Preview

You can easily build in a “Print Preview” command in your applications.
To do so, generate a report procedure with the Report template or the
Report Wizard. Then, simply check the Print Preview box in the Report
Properties dialog.

If you prefer to hand code your print preview process, see PREVIEW in
the Language Reference, for more information and examples.

Specify default
margins in the

Position dialog.

Implementing Print
Preview in your

application.

Press Report
Properties, then
check the Print

Preview box.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

PLACING STRUCTURES

Lay out your report structure by structure: FORM, HEADER, FOOTER,
and DETAIL. Each of these structures appears in a separate band. To
temporarily hide, then re-display a band, press the restore button on the
right side of the band (this button has a double triangle on its face).

Form

To specify constant text or graphics which print on every page, place it
in the FORM. Choose Bands ➤ Page Form . This is a free-floating
section which can overlap the other sections.

Use the FORM as a layer, to ‘hold’ graphic frames or preprinted forms
into which the data from the other sections ‘fit.’ Another use for the
FORM is to hold a ‘watermark,’ which prints underneath the report.

Tip: For best results when using a drawing tool to create a
‘watermark,’ on, for example, a 300 DPI printer, set the fill for
the watermark element to 10% gray, or light gray. At higher
printing resolutions, try 20% gray.

The FORM defaults to the same size as the page, less the margins.

The application composes the FORM at the beginning of the print job; it
does not update it with each new page. Therefore, the FORM is not
suitable for holding normal data fields, or even a page number. You can,
however, print fields from a control file, if you wish to print the same
field contents on every page of the report.

The FORM should guide the user to the data. You might use lines and
boxes, for example, to divide the DETAIL into ‘compartments,’
grouping data and columns for the user. You may even create a ‘greenbar
paper’ effect by alternating gray or light green color blocks.

Header

❏ To specify text and data to compose at the start of each page, place it
in the HEADER.

Choose Bands ➤ Page Header . Typically, the HEADER includes a
report title, and the page number. Optionally, it is a very useful place
to display your company logo. This section describes some of the
things you can do in a simple HEADER, incorporating these basic
elements.

CHAPTER 12 USING THE REPORT FORMATTER

❏ To set the font for any controls that appear in the header:

1. RIGHT-CLICK in the HEADER band and choose Font in the popup
menu.

The Select Font dialog appears. Select typeface, size, style, color,
and script from standard drop down lists. The Select Font dialog
shows you a sample of the font you select. Normally, the default font
is the default printer font. While this is excellent for the screen, a
TrueType serif font, such as Times New Roman, is much better for
hard copy.

2. Press the OK button.

❏ To add a logo graphic to the HEADER:

1. Choose Controls ➤ Image , or select the Image tool from the
Controls toolbox, then CLICK at the top left hand corner of the
HEADER band.

2. DOUBLE-CLICK on the image control you just placed.

 The Image Properties dialog appears.

3. Press the ellipsis (...) button to specify a File with the standard open
file dialog.

The image box appears as a square. Resize it, if necessary, by
dragging a corner handle. Move the square, if necessary, by dragging
the inside of the image box

4. Press the OK button.

Tip: Whenever possible, use vectorized graphics such as the
Windows Metafile Format (*.WMF). When you need to shrink or
stretch them, their appearance is less subject to distortion
than a bitmap.

Think visually when designing your reports. A small picture or logo
can create a professional looking report.

❏ To add a rule the width of the report to the HEADER:

1. Choose Controls ➤ Line , or select the Line tool from the Controls
toolbox, and CLICK below the image box.

2. DOUBLE-CLICK on the line control you just placed.

 The Line Proper ties dialog appears.

2. In the Line Properties dialog, set the line Width to “Full .”

Full indicates the line extends from margin to margin.

3, Set the line Height to Fixed , then type the zero in the blank field
next to Fixed .

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

The zero indicates the line has no height—it’s horizontal. Rules and
lines should be key elements of your report layouts. They can help
organize data for the user’s eyes.

❏ To place a control that prints the page number.

1. Add a string variable control for the page number; choose Controls
➤ String or select the string tool from the Controls toolbox, CLICK in
the header band.

2. DOUBLE-CLICK on the string control you just placed.

 The String Proper ties dialog appears.

3. In the Parameter field of the String Properties dialog, type @n3.

4. In the Use Field , type an equate label to reference the string in
source code.

5. From the Total type drop down list, choose Page No.

6. Press the OK button to close the String Properties dialog.

Footer

To specify text and data to compose at the end of each page, place it in
the FOOTER. Choose Bands ➤ Page Footer . Placing controls in the
FOOTER is similar to placing controls in the HEADER. You can just as
easily duplicate the examples above in a FOOTER, and the example
below in a HEADER.

❏ To place a “Date Printed” in a FOOTER structure:

1. Choose Controls ➤ String . Click in the FOOTER band.

Specifying a Page
Number field.

CHAPTER 12 USING THE REPORT FORMATTER

2. DOUBLE-CLICK on the string control you just placed.

 The String Proper ties dialog appears.

3. In the Parameter field, type a date picture (@d1, for example).

4. In the Use Field, type a variable name.

Assign the variable a value of TODAY().

5. Press the OK button to close the String Properties dialog.

Detail

To specify the data for the body of the report, place it in the DETAIL.
Choose Bands ➤ Detail. The DETAIL carries most of the data.
Additionally, the group HEADER and group FOOTER structures appear
inside the DETAIL print area on the page.

When you work with the Report Formatter from the Text Editor, it will
add another DETAIL structure every time you add a BREAK. You can
delete the ones you don’t use.

When working with the Application Generator, the REPORT will
probably have one DETAIL.

Tip: For best automatic handling when it comes to placing
structures on the page, nest your DETAIL inside all other
structures. For example, if you have two BREAK structures,
one nested in the other, delete all DETAIL structures except
the one nested inside the innermost BREAK.

The most commonly used control for displaying data is the STRING
control. You may fill the string with the contents of a data dictionary
field by specifying the field identifier in the USE attribute. You can
access the USE attribute in the String Properties dialog. You may also
specify a display picture token to control the format of the displayed
value.

A report may have multiple DETAIL structures. This allows you to
create alternate report layouts for a single report, then use control
statements in the source code to allow the user to choose which to print
at runtime. Each DETAIL structure requires its own PRINT statement.
Multiple DETAIL structures also give you complete control over what
prints where and when.

The typical steps required to place a data dictionary field in the DETAIL
band when working within the Application Generator are:

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

1. Select the Dictionary Fields tool from the Controls toolbox then
CLICK in the DETAIL band, or choose Populate ➤ Dictionary Field
from the menu.

2. Select a field from the Select Field dialog.

3. CLICK inside the detail band.

This places the control specified for this field in the data dictionary.
A series of dollar signs ($) appears to show the control’s print
position and size.

That’s all there is to placing a field in a report. There are many language
elements to customize the report behavior and field formatting which the
later part of this chapter will discuss.

Group Breaks

Group breaks provide a means of grouping report data into sections and
optionally displaying subheadings, subtotals, or other information
associated with the subgroup. Each group consists of a set of records, all
sharing the same value in the BREAK field.

In order to generate meaningful groups, the records should be sorted in
the same sequence as the BREAKs are declared. See Sorting for Group
Breaks below.

Within a report, you may visually separate these groups, and add a
subtotal or other summary information, above the group, below the
group, or both. Group breaks are also called group bands by some
popular database applications.

Populating the
Report.

CHAPTER 12 USING THE REPORT FORMATTER

The Report Formatter displays group breaks in a tree structure, which
allows you better visualize nested group breaks. The group break may
contain the same elements as the report: a group HEADER, group
DETAIL, and group FOOTER.

Perhaps you wish to print an invoice report by customer. Set a BREAK
on customer, and sort by customer. You can then summarize the invoice
totals for each customer in alphabetical order. The report prints the group
DETAIL, HEADER, and FOOTER for the set of records with the same
customer. These structures all print inside the detail print area at the
position you specify.

The print engine composes the group HEADER before the group
DETAIL. The group HEADER is a good place to identify the group, for
example, with a label saying “Customer:” followed by a variable string
for the customer name field.

The group FOOTER, is composed after the group DETAIL. You can
place a string saying “Total:” followed by a string variable which
contains the field to be summed, with the SUM attribute.

o To create a group break:

1. Be sure the DETAIL band is visible; if not, press the restore button.

2. Choose Bands ➤ Surrounding Break .

3. When the cursor changes to a crosshair, CLICK in the DETAIL band.

The Break Properties dialog appears.

4. In the Break Properties dialog, type a valid Clarion label to use as a
name for the break.

Dividing the report
into bands with a

Group BREAK
structure.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

5. Type the name of a variable or field, including the prefix, to break
on.

You can press the ellipsis (...) button to select a break field from the
Select Field dialog.

6. Press the OK button.

This inserts the group BREAK. When the report prints, it groups
together all records with the same value for the BREAK field, and
prints any group HEADER and FOOTER defined for the break.

Tip: If the break variable is a global or local variable, you must be
sure that the executable code updates its value, so that it can
generate a group BREAK.

7. Choose Bands ➤ Group Header from the menu to define a group
HEADER for the BREAK.

8. When the cursor changes to a crosshair, CLICK in the BREAK mini
caption bar.

The Page/Group Header Properties dialog appears. Specify a field
equate label and any special page breaking behavior. See Page
Breaks below.

9. Press the OK button.

This inserts the group HEADER band. You may place controls here
just as in any other report band. Group footers are added similarly,
using Bands ➤ Group Footer from the menu

Sorting for Group Breaks

The sort sequence of a file is determined by a KEY or INDEX defined in
the Data Dictionary’s Field/Key Definition dialog. Keys or indexes are
selected for use in this particular report procedure, with the File
Schematic Definition dialog. When you select a file and a key for your
procedure, the key will determine the order in which you define your
group breaks.

For example, if you report on the Customer file, and select the
CUS:LastNameKey as your key, then your BREAK fields should be
among those fields listed as components of the CUS:LastNameKey. You
can see the key’s component fields in the Data Dictionary’s Field/Key
Definitions dialog.

CHAPTER 12 USING THE REPORT FORMATTER

Further, you may specify more than one file to report on. You may
specify a primary file and secondary files. The secondary files must be
related to the primary file by a common field. These file relationships are
defined in the Data Dictionary’s Relationship Properties dialog.
Adding secondary files to your procedure gives you another logical field
to break on: that is, the common field(s) linking the two files.

❏ To specify the sort sequence for your report:

1. From the Application Tree dialog, DOUBLE-CLICK on the report
procedure name.

The Procedure Properties dialog appears.

2. Press the Files button.

The File Schematic Definition dialog appears. Use this dialog to
tell the Application Generator which files and keys your report
procedure will access.

3. DOUBLE-CLICK the ToDo item for your procedure.

The Insert File dialog appears.

4. DOUBLE-CLICK the file you wish to report from.

The File Schematic Definition dialog reappears.

5. Press the Key button, to specify which key is used for this
procedure.

The Change Access Key dialog appears.

Specifying the
file(s) you will

report on.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

6. DOUBLE-CLICK the key you want for this report.

The File Schematic Definition dialog reappears.

7. Press the OK button.

Page Breaks

One of the main considerations when laying out a report is planning
page breaks. You can’t always predict how long or short a group will be.
Therefore you should plan on how your report will behave when it
reaches the end of the page, and there are still more items (in the group)
to print.

There are several options available. The options are Page Before, Page
After, With Next, and With Prior.

To access the dialog which allows you to set these options, DOUBLE-CLICK

the DETAIL section. This displays the Detail Properties dialog,
containing the options described below. You may also set the Page
Before and Page After options for break HEADERs or FOOTERs. These
options are available in the Page/Group Header Properties and Page/
Group Footer Properties dialogs as well.

Specifying the sort
key for your report.

CHAPTER 12 USING THE REPORT FORMATTER

PAGEBEFORE

To force a page break immediately before printing an item, check the
Page before box in the respective section properties dialog. This sets the
PAGEBEFORE attribute. Applicable to DETAILs, HEADERs, and
FOOTERs. When applied to a DETAIL, this prints the full DETAIL
starting at the top of a new page. Any associated FOOTER prints on the
previous page.

You can then optionally specify the page number of the new page. The
page number automatically increments, unless you reset it. To reset the
page number to a value you specify, type it in the New Page No field.

PAGEAFTER

To force a page break immediately after printing an item, check the
Page after box in the respective section properties dialog. This sets the
PAGEAFTER attribute. Applicable to DETAILs, HEADERs, and
FOOTERs. When applied to a DETAIL, this prints the DETAIL and the
FOOTER, then begins a new page.

You can then optionally specify the page number of the next page. The
page number automatically increments, unless you reset it. To reset the
page number to a value you specify, type it in the Next Page No field.

Tip: To print a separate page for each record, place the variable
strings and/or controls you wish in the DETAIL, and specify
the PAGEAFTER attribute in the Detail Properties dialog.

WITHNEXT

To prevent ‘widow’ elements in a printout, type a value in the Keep next
field in the Detail Properties dialog. A ‘widowed’ print element is one
which prints, but then is separated from the succeeding elements by a
page break. Checking this box sets the WITHNEXT attribute, which is
normally placed on a group HEADER to keep the HEADER on the same
page as its associated details.

Specifying page
breaking behavior.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

The value specifies the number of succeeding elements to print—a value
of ‘1,’ for examples, specifies that the next element must print on the
same page, else page overflow puts them both on the next page.

WITHPRIOR

To prevent ‘orphan’ elements in a printout, type a value in the Keep
prior field in the Detail Properties dialog. An ‘orphaned’ print element
is one which prints on a following page, separated from its related items.
This sets the WITHPRIOR attribute, which is normally placed on a
group FOOTER to keep the FOOTER on the same page as its associated
details.

The value specifies the number of preceding elements to print—a value
of “1,” for example, specifies that the previous element must print on the
same page.

Tip: When placing subtotals or totals in a DETAIL, use the
WITHPRIOR attribute to ensure they print with at least one
member of their detail when a page break occurs.

PLACING CONTROLS IN A REPORT

This sections explains how to place a control in a report. The Setting
Report Control Properties section below explains how to customize the
controls you place in your reports.

The Controls Toolbox appears when you start the Report Formatter .
Hide or re-display the Controls toolbox by choosing Options ➤ Show
Toolbox. All the controls in the toolbox are also available from the
Controls menu. The Controls Toolbox works exactly like a palette of
drawing tools, such as the toolbox in the Windows Paintbrush accessory.
To place a control:

1. CLICK on an icon in the toolbox, or choose a control from the menu.

When you have selected a control, then pass the cursor over a report
band, the cursor becomes a crosshair.

2. CLICK inside the band you wish to add the control to.

The upper left hand corner of the control is placed at the intersection
of the cursor crosshair when you CLICK the mouse.

CHAPTER 12 USING THE REPORT FORMATTER

3. If necessary, CLICK and drag on a control’s handle to resize the
control. CLICK and drag on the interior of the control to move the
control.

Report Formatter Tools

Controls Toolbox

The Report Formatter contains a floating Controls toolbox, similar to
the ones in the Window Formatter . Simply choose a control from the
toolbox (CLICK on it), then CLICK in a report band to place the control in the
report.

String Allows you to place a STRING control on the
report under construction. See Setting String
Control Properties.

Text Field Allows you to place a TEXT control on the
report under construction. See Setting Text
Control Properties.

Group Box Allows you to place a GROUP control (group
box) on the report under construction. See
Setting Group Box Control Properties.

Option Box Allows you to place an OPTION control
(OPTION structure, which appears as a group
box with radio buttons) on the report under
construction. See Setting Option Box Control
Properties.

Check Box Allows you to place a CHECKBOX control on
the report under construction. See Setting Check
Box Properties.

Radio Button Allows you to place a RADIO control on the
report under construction. See Setting Radio
Button Properties.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

List Box Allows you to place a LIST control (list box, or
drop down list box) on the report under
construction. See Creating List Boxes in the
Setting Control Properties chapter.

Image Allows you to place an IMAGE control (graphic
image) on the report under construction. See
Setting Image Control Properties.

Line Allows you to place a LINE control on the
report under construction. See Setting Line
Control Properties.

Box Allows you to place a BOX control on the report
under construction. See Setting Rectangle
Control Properties.

Ellipse Allows you to place an ELLIPSE control on the
report under construction. See Setting Ellipse
Control Properties.

Dictionary Field Allows you to select a field defined in the Data
Dictionary, and place the control specified in the
data dictionary, plus an associated PROMPT
control, on the report under construction.

Custom Control Allows you to place a CUSTOM control (Visual
Basic custom control) on the report under
construction. See Setting Custom Control
Properties.

Control Template Allows you to add one or more controls to your
report, along with associated source code.

Display or hide the Controls toolbox by choosing Options ➤ Show
Toolbox. All the controls in the toolbox are also available from the Controls
menu. See Placing Controls in a Report above. Also see the Setting Control
Properties chapter.

Tip: Position the cursor over any tool and wait for half a second. A
tool tip appears telling you the type of control that will be
created by this tool.

Property Toolbox

The Report Formatter’s Property toolbox allows you to quickly
specify the appearance and content of the text on each control within the
report. Control the font, size, style, and content of all your text, using

CHAPTER 12 USING THE REPORT FORMATTER

standard word processor buttons and drop down lists.

Display or hide the Property toolbox by choosing Options ➤ Show
Propertybox. Resize the Property toolbox by placing the cursor on the
border of the box. When the cursor changes to a double headed arrow,
CLICK and DRAG.

Align Toolbox

The Report Formatter’s Align toolbox allows you to quickly,
professionally, and precisely align the controls in your report. Select the
controls to align (CTRL+CLICK allows you to select multiple controls),
then click on the appropriate alignment tool. All the alignment actions
are also available from the Align menu.

Display or hide the Align toolbox by choosing Options ➤ Show
Alignbox. Resize the Align toolbox by placing the cursor on the border
of the box. When the cursor changes to a double headed arrow, CLICK and
DRAG.

Tip: For most alignment functions, the first control(s) selected
(blue handles) are aligned with the last control selected (red
handles). That is, the last control selected is the anchor
control. It doesn’t move, the others do.

Align Left Aligns the left borders of the selected controls
with the left border of the last control selected
(red handles).

Align Right Aligns the right borders of the selected controls
with the right border of the last control selected
(red handles).

Align Top Aligns the top borders of the selected controls
with the top border of the last control selected
(red handles).

Align Bottom Aligns the bottom borders of the selected
controls with the bottom border of the last
control selected (red handles).

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Align Horizontally Along a vertical axis, aligns the centers of the
selected controls with the center of the last
control selected (red handles).

Align Vertically Along a horizontal axis, aligns the centers of the
selected controls with the center of the last
control selected (red handles).

Spread Vertical Equalizes the vertical spaces between the
selected controls.

Spread Horizontal Equalizes the horizontal spaces between the
selected controls.

Same Size Makes all selected controls the same height and
width as the last control selected (red handles).

Same Height Makes all selected controls the same height as
the last control selected (red handles).

Center Vertical As a group (relative positions of selected
controls don’t change), centers the selected
controls horizontally within the report.

Center Horizontal As a group (relative positions of selected
controls don’t change), centers the selected
controls vertically within the report.

Tip: Position the cursor over any tool and wait for half a second. A
tool tip appears telling you the type of alignment this tool will
accomplish.

Report Formatter Menus

Using the Popup Menu

Access the popup menu by RIGHT-CLICKING a band or a control. The
popup menu on the Report Formatter allows you to manipulate and
customize the report bands, and the controls in the report bands,
depending on whether the band or a control is selected.

❏ To select a control, place the cursor on the control and RIGHT-CLICK.

CHAPTER 12 USING THE REPORT FORMATTER

❏ To select a report band, place the cursor anywhere on the band, but
not on other controls, then RIGHT-CLICK.

Tip: Many of the popup menu commands are also available on the
Report Formatter Edit menu.

Following is a description of the popup menu choices.

Properties To edit control or report band properties, select
a control or report band, and choose the
Properties command. See Setting Report
Control Properties below for more information.
You may also DOUBLE-CLICK a control or report
band, or RIGHT-CLICK and select the Properties
command from the popup menu.

Font To control the appearance of the text displayed
in a control or report band, select the control or
band and choose the Font command. Specify
font, size, style, script, and color from drop
down list boxes. Toggle Strikeout and Underline
on and off with check boxes. The Select Font
dialog shows you a sample of the text design
you have chosen.

Specifying fonts for
your report text.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Position To specify the position of a control or a report
band, select it and choose the Position
command.

To position controls, you will normally CLICK

and DRAG the controls, use the Align tools, or
both. However, you may use the Position
command (and therefore the Position Tab of the
various control properties dialogs) to position
your controls. See the Setting Control
Properties chapter for more information. Also
see Grid Settings in the Using the Options Menu
section below.

List Box Format To specify the appearance and functionality of a
list box control, select the list box and choose
the List Box Format command. See the Using
the List Box Formatter chapter for more
information.

Delete To delete a control or a report band, select it
and choose the Delete command, or select it and
press the DELETE key.

Duplicate To copy a control, select it and choose the
Duplicate command,.

Using the Edit Menu

The Edit menu in the Report Formatter allows you to manipulate and
customize the report and the controls in the report.

Tip: Many of the Edit menu commands are also available on the
popup menu that you access by RIGHT-CLICKING on the control or
the report band.

Next Band Not implemented in this release.

Delete Band To delete a report band, select it and choose the
Delete Band command, or select it and press
the DELETE key. This deletes the band and all
controls in it.

Report Properties To edit report properties, choose the Report
Properties command.

CHAPTER 12 USING THE REPORT FORMATTER

Selected Properties To edit control or report band properties,
select a control or report band, and choose the
Selected Properties command. See Setting
Report Control Properties below for more
information. You may also DOUBLE-CLICK a
control or report band, or RIGHT-CLICK and select
the Properties command from the popup menu.

Font To control the appearance of the text displayed
in a control or report band, select the control or
band and choose the Font command. Specify
font, size, style, script, and color from drop
down list boxes. Toggle Strikeout and Underline
on and off with check boxes. The Select Font
dialog shows you a sample of the text design
you have chosen.

Position To specify the position of a control or a report
band, select it and choose the Position
command. To position controls, you will
normally click and drag the controls, use the
Align tools, or both. However, you may use the
Position command (and therefore the Position
Tab of the various control properties dialogs) to
position your controls. See the Setting Control
Properties chapter for more information. Also
see Grid Settings in the Using the Options Menu
section below.

List Box Format To specify the appearance and functionality of a
list box control, select the list box and choose
the List Box Format command. See the Using
the List Box Formatter chapter for more
information.

Delete Control To delete a control, select it and choose the
Delete Control command, or select it and press
the DELETE key.

The Report
Formatter Edit

Menu.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Duplicate To copy a control, select it and choose the
Duplicate command.

Set Control Order
To set the control order, choose the Set Control
Order command. This opens the Order Control
dialog, which displays all controls on the report
in a hierarchical list. Reorder the controls by
selecting a control and pressing the ↑↑↑↑↑ and ↓↓↓↓↓
buttons to move the control up or down within
the list.

Using the Controls Menu

The Controls menu lists the controls that appear in the Controls
Toolbox. Executing a command from the Controls menu is identical to
clicking on the corresponding toolbox icon. The menu serves as a
convenience.

For a list of toolbox controls, see the Report Formatter Tools section
above. Also see the Setting Control Properties chapter.

Using the Alignment Menu

The Alignment menu lists the same Alignment tools that appear in the
Align Toolbox. Executing a command from the Alignment menu is
identical to clicking on the corresponding toolbox icon. The menu serves
as a convenience.

For a list of Alignment tools, see the Report Formatter Tools section
above.

Using the Bands Menu

Page Header To add a page header band to your report,
choose Page Header from the menu. The
HEADER structure traditionally prints at the top
of each page of the report. Typically, you place
the report title, graphics and other
"introductory" elements in the HEADER.

Page Footer To add a page footer band to your report,
choose Page Footer from the menu. The
FOOTER structure traditionally prints at the
bottom of the report. Typically, you may place a
page number, or totals in the FOOTER.

CHAPTER 12 USING THE REPORT FORMATTER

Page Form To add a page form band to your report, choose
Page Form from the menu. The FORM
structure prints as a "background layer."
Typically, you may display "overlays" such as
graphics and field labels in the FORM layer,
then print the actual data in the DETAIL. The
FORM remains constant from page to page.

Detail To add a detail band to your report, choose
Detail from the menu. The DETAIL structure is
the "body" of the report. It contains the basic
data, either in table or record format.

Break Group To add a new detail, break, group header and
group footer to your report, choose Break
Group from the menu. Place the crosshair
where you want the new group of bands to
appear, and CLICK. The Break Properties dialog
appears. Specify the variable to break on and
press OK.

Group Header To add a group header band to an existing
break, choose Group Header from the menu.
Place the crosshair on the caption bar of the
break you wish to modify, and CLICK. The Page/
Group Header Properties dialog appears.

Group Footer To add a group footer band to an existing break,
choose Group Footer from the menu. Place the
crosshair on the caption bar of the break you
wish to modify, and CLICK. The Page/Group
Header Proper ties dialog appears.

The Report
Formatter Bands

Menu.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Surrounding Break
To specify a break around an existing detail,
choose Surrounding Break from the menu.
Place the crosshair on the detail you want to
break on, and CLICK. The Break Properties
dialog appears. Specify the variable to break on
and press OK.

Using the View Menu

You can edit your report only in Band View. You may view your report
as it appears on the printed page by choosing View ➤ Page Layout
View , or Preview! . Page Layout View additionally allows you to move
and resize the HEADER, FOOTER, DETAIL, and FORM sections by
CLICKING and DRAGGING. See also Using Preview!

Page Layout View To view your report in page layout mode, choose
View ➤ Page Layout View from the action bar.
Page Layout view allows you to select, relocate,
and resize report sections by dragging their
handles.

Band View To edit your report, choose View ➤ Band View
from the menu.

Expand Bands To close or open all the bands at once, choose
View ➤ Expand Bands from the menu.

Using the Populate Menu

The Populate Menu appears in the Report Formatter only when the
Application Generator is active. It places a field or memory variable in
the report, along with an appropriate control. For fields, the control type
depends on how the field is defined in the data dictionary.

Dictionary Field Allows you to place an entry control tied to a
data dictionary field or a memory variable.
When you CLICK in the report, the Select Field
dialog appears. Select a field or variable, then
CLICK in the report.

If you specified a prompt for the field when
creating the data dictionary, the first CLICK places
the prompt for the control. The second CLICK

places the control. If you pre-formatted the field,
on the Report tab of the Field Properties
dialog (for example, specifying a text control),
the control you specified appears, rather than an
entry box.

CHAPTER 12 USING THE REPORT FORMATTER

Control Template Allows you to add one or more controls to your
report, along with associated source code.

Using the Options Menu

The Options menu allows you to display and hide the various Report
Formatter tools and toolboxes.

Zoom In Magnifies the “view” in Preview mode.

Zoom Out Reduces the “view” in Preview mode.

Show Toolbox To toggle the Controls toolbox display on and
off, choose the Show Toolbox command. When
designing large reports, it may be useful to hide
the toolbox, gaining additional room for the
report. You may still access all the control tools
by choosing them from the Control menu.

Show Alignbox To toggle the Alignbox display on and off,
choose the Show Alignbox command. This is a
matter of individual preference. You may still
access all the alignment commands by choosing
them from the Alignment menu.

Show Propertybox To toggle the Propertybox display on and off,
choose the Show Propertybox command.

Snap to Grid To turn grid snap on or off, choose the Snap to
Grid command. Grid snap forces the upper left
corner of new controls to align with a dot grid in
the report. The grid is not printed; it is a design
tool only.

Grid Size To set the size of the grid units, choose the Grid
Size command. You may enter different values
for the X and Y axes.

The Report
Formatter Options

Menu.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

To set the width and height spacing between the
grid dots, enter values in the Width and Height
fields in the Grid Size dialog. The values are in
the measurement unit specified in the Report
Properties dialog.

Using Preview!

Preview! allows you to experiment with various report formats, without
actually compiling and running the report. You can quickly “preview”
alternative layouts for DETAILs, HEADERs, and FOOTERs, and you
can see the effects of the page breaking options you have chosen.

The Report Formatter supplies test data in the format you specify in the
report bands. Fonts, sizes, colors, and positions of report controls are all
displayed.

To generate a simulated report similar to the one that your user will see:

 1. Choose the Preview! command.

The Preview Print Details dialog appears. This dialog lets you
generate “filler” data for your report. The data have no values, but
serve as placeholders, so you can get a feel for the appearance of
your finished report.

If you have more than one DETAIL, highlight one of them on the
left side of the dialog.

2. Press the Add button to generate a DETAIL placeholder.

Experimenting with
various detail

formats and
combinations.

CHAPTER 12 USING THE REPORT FORMATTER

Generate as many DETAIL placeholders as you need. Some reports
will have only one record per page, others will have many records.
You can add enough records to overflow the page and preview the
page breaking behavior of your report.

You can even mix two or more DETAILs. Use the up and down
buttons to rearrange the DETAIL placeholders.

3. Press the OK button to preview the report.

4. Choose Options ➤ Zoom in for a magnified view.

5. To exit Preview! mode, press ESC, or press Band View!

The Report Formatter Band View reappears.

SETTING REPORT CONTROL PROPERTIES

Adding Text Labels and Fields

The most important part of the report creation process is laying out the
fields—placing the data on the page. Clarion allows you to place strings
(constants) and variable string controls on the page for ‘basics.’ You may
also place other controls—graphics and specialized controls such as list
boxes—in your report.

In most cases, setting control properties for a report is identical to setting
control properties for a window. See the Setting Control Properties
chapter for more information on each of the following controls.

Strings

Among the first items you place on the report will probably be titles or
labels. STRING controls are useful for these elements.

Preview page
HEADERs and

group HEADERs.

Preview DETAILs
and page breaking

behavior.

Preview
typeface, size,

style and color.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

❏ To create column titles for a tabular report, place them at the bottom
of the HEADER, so that they appear at the top of each DETAIL
section, above the data.

Tip: Be sure to line up the left handles of the data controls with the
left handles of the title controls. Use the alignment tools, the
grid snap feature, or both.

❏ To create labels for a ‘form’ report, place them alongside each field,
within the DETAIL.

❏ To place a string control in your report:

1. Select the String tool from the Controls toolbox and CLICK in the
detail, or choose Controls ➤ String . The cursor changes into a
crosshair.

2. CLICK in the band which should contain the control. The center of the
crosshair positions the upper left corner of the control.

The Report Formatter places a STRING control in the report
structure.

3. DOUBLE-CLICK the control, or RIGHT-CLICK the control and choose
Properties from the popup menu.

When the String Properties dialog appears, fill it much as you
would for window string controls (within the Window Formatter).

❏ To specify “static” text for the string, type the text you wish to
display directly in the Parameter field.

❏ To instruct the report to print a “dynamic” string, place a picture
token in the Parameter field, then specify a variable in the Use
field, and check the Variable string box.

❏ To center a title or label appearing over a column of data within a
table, choose Centered from the Justification drop down list.

❏ To right align a title or label appearing over a column of numeric
data within a table, choose Right Justified from the Justification
drop down list.

CHAPTER 12 USING THE REPORT FORMATTER

Multi-Line Text

A multi-line text control can print a long string (such as a memo) in the
report for you, automatically word-wrapping and printing as many lines
as the control’s physical size allows.

For each variable string control to place in your report:

1. Select the Text tool from the Controls toolbox, or choose Controls
➤ Text Field .

2. CLICK in the band which should hold the control.

The center of the crosshair positions the upper left corner of the
control. The Select Field dialog appears. Use this dialog to select
(or create) the data dictionary field or memory variable displayed by
this control.

3. Press the Select button.

The Report Formatter places a TEXT control in the report
structure.

4. DOUBLE-CLICK the control, or RIGHT-CLICK the control and choose
Properties from the popup menu.

When the Text Properties dialog appears, fill it much as you would
for window text controls (within the Window Formatter).

Probably the most important pieces of information to fill in for the
text control are position and size. The simplest way to create a multi-
line text box at the size you wish is to accept the defaults, press the
OK button in the dialog, then resize the box by using the mouse to
drag the handles. The onscreen rulers help verify the correct sizing.
Alternatively, you may specify position and size on the Position tab.

Tip: To specify an approximate number of lines to print, specify the
Text control size in points, (the POINTS attribute). If, for
example, the font size for the control is ten points, allow 20%
extra for leading (the space between each line), Multiply the
result (12 points) by the number of lines you wish. For
example, for a five line control using 10 point type, type ‘60
POINTS’ in the Fixed Height field. You must specify points as
the measurement unit for the entire report. One point equals 1/
72 inch.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Adding Graphic Controls

Graphic controls embellish the report and guide the reader’s eye to the
data. These controls allow you to add pictures and simple graphic lines
to your report design.

In most cases, setting control properties for a report is identical to setting
control properties for a window. See the Setting Control Properties
chapter for more information on each of the following controls.

Image

Most likely you will wish to place an image, such as a logo, in a
HEADER. You may choose any of the graphic file formats supported for
window controls; however, printing large images, especially .JPG files
may present problems for some printers.

The most important consideration when placing a bitmap is its size—
Clarion automatically resizes the bitmap to fit the control size. This may
introduce distortion if it shrinks or stretches the bitmap. The simplest
way to prevent distortion is to keep the same ratio between the pixel
resolution and the printed resolution.

To size a 640 x 480 pixel graphic, for example, determine its height-to-
width ratio, which is 4:3. Plan an image box in the same ratio—for
example, 2000 x 1500 thousandths, which represents a 2 inch by one and
a half inch box on the page.

The Band View previews the image. You may even shrink and stretch the
image by selecting it and dragging the handles.

To place an IMAGE control in a band:

1. Select the Image control from the Controls toolbox, or choose
Controls ➤ Image .

2. CLICK in the band where you want to place the control.

The Report Formatter places an IMAGE control in the report
structure. The center of the crosshair positions the upper left corner
of the control.

3. DOUBLE-CLICK the control you just placed.

The Image Properties dialog appears.

CHAPTER 12 USING THE REPORT FORMATTER

4. In the File field, type the fully qualified image file name, or press the
ellipsis (...) button to select the file from the standard open file
dialog.

Clarion automatically links the image file into the executable when
the file is explicitly named in the control.

5. In the Use field, type a field equate label to refer to the image
control in source code.

6. Press the Position tab.

7. Type the correct image size in the fixed Width and Height fields.

8. Press OK.

Line

Lines are the simplest means of visually separating sections or fields
within your report. To place a line:

1. Select the Line tool from the Controls toolbox, or choose Controls
➤ Line —the cursor changes to a crosshair.

2. CLICK in the band in which you want to place the line.

The center of the crosshair positions the left end point. The Report
Formatter places a LINE control in the report structure. Relocate
and resize the line by dragging its handles.

3. DOUBLE-CLICK the line you just placed.

The Line Properties dialog appears.

4. In the Use field, type a field equate label to refer to the line control
in source code.

5. Press the Position tab if you wish to specify exact coordinates for
the line.

To specify a horizontal line, be sure to check the Fixed box in the
Height group, and type a zero (0) in the box next to it. The height is
the measure of the vertical distance between the origin and the end
point; for a horizontal line, this is equal to zero. In the Height group,
type the length of the line in the Fixed box.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

To specify a vertical line, check the Fixed box in the Width group,
and type a zero (0) in the box next to it. The width is the measure of
the horizontal distance between the origin and the end point; for a
vertical line, this should be zero. In the Width group, type the length
of the line in the Fixed box.

To specify a horizontal or vertical line the full width or height of the
section, check the Full option.

Tip: To create a horizontal rule, or divider line useful for splitting a
HEADER from the DETAIL section, for example, check Full
Width, and set the Fixed Height to zero. To create a very thick
rule, you can use a BOX control, also checking Full Width to
place it across the page.

6. To specify a line color, press the Line Color button on the Extra tab.
Then choose a color from the Line Color dialog.

Box

You can highlight a report field by placing a gray box underneath it. You
can frame an entire area of a report by placing a box with no fill around
it. To place a box:

1. Select the Box tool from the Controls toolbox, or choose Controls
➤ Box .

2. CLICK in the band in which you want to place the box.

The center of the crosshair positions the upper left corner of the box.
When you click, the Report Formatter places a BOX control in the
report structure. Resize and relocate the box by dragging its handles
or its interior.

3. DOUBLE-CLICK the box you just placed.

The Box Properties dialog appears.

4. In the Use field, type a field equate label to refer to the control in
source code.

5. Press the Extra tab.

6. Set the FILL attributes.

If you want a solid box filled with color, check the Fill box, then
press the Fill Color button and choose a color from the Fill Color
dialog.

7. To give the box a border and choose its color, set the COLOR
attribute.

If you want a colored border, check the Border box, then press the
Border Color button and choose a color from the Border Color
dialog.

CHAPTER 12 USING THE REPORT FORMATTER

8. If you want rounded corners for the box, check the Round box to set
the ROUND attribute.

9. To set the size of the box by typing in coordinates, press the
Position tab. Type the measurements you wish in the Fixed Width
and Fixed Height boxes.

Tip: To create a border or ‘frame’ around the whole report, place a
box in the Form band. Be sure the FORM is the full size of the
page. Create a box with a border but no fill, and set the width
and height to Full.

10. Press the OK button to close the Box Properties dialog.

Ellipse

When placing an ELLIPSE in a report, follow the same procedures as for
placing a box.

Remember, however, that the four position coordinates (AT attribute)
specify the outer bounds of the ellipse. These define a box whose
perimeter exactly contains the ellipse.

Adding Specialized Controls

The Report Formatter gives you the ability to print on the page
virtually anything you can put on the screen. Just as a specialized control
performs a function on screen—such as graphically portraying a
“choice,” like radio buttons—these same controls may perform the same
function in your printed report.

In most cases, setting control properties for a report is identical to setting
control properties for a window. See the Setting Control Properties
chapter for more information on each of the following controls.

List Box

When the data you require for the report exists in a QUEUE, you may
place a list box in the report. The list box that appears on the page is
similar to the LIST control that appears on screen, though it will
obviously not have the same functionality—the printed page does not
support scroll bars, for example.

Because Clarion provides so many list box formatting options, adding a
LIST to the report allows you to create fancy “pigeonholes,” suitable for
columns and rows of items, for example.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

At print time, the first time the code cycles through the QUEUE, it prints
the LIST’s header, and the first item in the queue. Each additional cycle
prints the next member of the QUEUE, without repeating the header.
The LIST’s footer prints at the end of the QUEUE.

Printing a list box, rather than individual variable strings, is probably
most useful when you’ve already formatted a LIST for the screen, such
as a browse window.

To place a list in your report:

1. Select the List Box tool from the Controls toolbox, or choose
Controls ➤ List Box .

2. CLICK in the band which should contain the control.

The center of the crosshair positions the upper left corner. When you
click, the List Box Formatter appears. Use the List Box Formatter
just as though you were designing a list box for the screen. See the
Using the List Box Formatter chapter. When you are finished, press
the OK button.

The Report Formatter places a LIST control in the report structure.
Resize and relocate the box by dragging its handles or its interior.

3. DOUBLE-CLICK the list box you just placed.

The List Properties dialog appears.

4. In the Use field, type a field equate label to refer to the control in
source code.

5. Press the Extra tab.

6. In the From field, type the origin of the list box data—the QUEUE.

7. Press the Position tab to further specify the location and size of the
list box.

Tip: To create a “quick and dirty” report from a browse list, choose
Full for the Width and Height of the List box control within the
DETAIL.

8. Press the OK button to close the List Properties dialog.

Option Box

You may print an OPTION structure within your report. This appears on
the page exactly as it does on screen—as an option box. You place an
option structure on the page only to hold radio buttons. You may hide the
structure so that it does not print on the page.

CHAPTER 12 USING THE REPORT FORMATTER

1. Select the Option Box tool from the Controls toolbox, or choose
Controls ➤ Option Box .

2. CLICK in the band in which you want to place the OPTION structure.

The center of the crosshair positions the upper left corner of the box.
The Report Formatter places an OPTION structure within the
report structure. Resize and relocate the option box by dragging its
handles or its interior.

3. DOUBLE-CLICK the option box you just placed.

The Option Properties dialog appears.

4. In the Parameter field, type a caption for the option box.

If you choose not to hide the option box when printing, the caption
appears at the upper left border of the box, just as it does on screen.

5. In the Use field, type a field equate label to refer to the control in
source code.

6. Press the Extra tab.

7. Uncheck the Boxed box to hide the box, but not the radio buttons.

8. Press OK.

You must add each radio button separately, placing them in the
OPTION box.

Radio Button

Placing RADIO buttons in a printed report provides a visual aid to the
user, by showing all the possible values for a single field in a record, and
marking the one which is chosen.

Before you place the radio buttons in the report, you must first place an
OPTION structure, by using the Controls ➤ Option Box command.
The RADIO button must be placed inside the option box representing
the OPTION structure. If you attempt to place a radio button without an
OPTION structure, the Development Environment displays an error
message.

1. Place an option box.

2. Select the Radio Button tool from the Controls toolbox, or choose
Controls ➤ Radio Button .

3. CLICK inside the option box you just placed.

The center of the crosshair positions the upper left corner of the
radio button. The Report Formatter places an RADIO control
within the OPTION structure.

4. DOUBLE-CLICK the radio button you just placed.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

The Radio Button Properties dialog appears.

5. In the Parameter field, type a caption for the radio button.

The caption appears beside the radio button, just as it does on screen.

6. In the Use field, type a field equate label to refer to the control in
source code.

The radio button automatically ‘turns on or off’ according to the
value of the variable specified in the OPTION box’s USE attribute.

7. Press OK.

Check Box

The check box (CHECK control) provides an attractive way to display a
yes/no choice for a field—the alternative might be an entire column that
repeats “one,” “yes,” or even “.T.” for each record.

The printed check box looks similar to an on screen check box. To place
the check box:

1. Select the Check Box tool from the Controls palette, or choose
Controls ➤ Check Box .

2. CLICK inside the band where the control will belong.

The center of the crosshair positions the upper left corner of the
check box. The Select Field dialog appears. Use this dialog to select
(or create) the data dictionary field or memory variable displayed by
this control. This should be a numeric variable which turns the check
box on or off. A value of zero indicates the box is unchecked; any
other value, checked.

3. Press the Select button.

The Report Formatter places a CHECK structure within the report
structure.

4. DOUBLE-CLICK the control, or RIGHT-CLICK the control and choose
Properties from the popup menu.

The Check Box Properties dialog appears.

5. In the Parameter field, type a caption for the check box.

The caption appears beside the check box, just as it does on screen.

6. Press OK.

Group Box

The primary reason for placing a group box in a report is to make a
group of controls on paper resemble their appearance on screen.

To place the GROUP control:

CHAPTER 12 USING THE REPORT FORMATTER

1. Select the Group Box tool from the Controls toolbox, or choose
Controls ➤ Group Box .

2. CLICK inside the band where the control will belong.

The center of the crosshair positions the upper left corner of the
check box. The Report Formatter places a GROUP structure within
the report structure.

3. DOUBLE-CLICK the control, or RIGHT-CLICK the control and choose
Properties from the popup menu.

The Group Properties dialog appears.

4. In the Parameter field, type a caption for the group box.

This appears at the upper left border of the group box when the
report prints, provided you check the Boxed box.

5. In the Use field, type a field equate label to refer to the control in
source code.

6. Press the Extra tab.

7. Uncheck the Boxed box to hide the box, but not the internal
controls.

8. Press OK.

9. Add additional controls to the group.

Custom Controls

You may place a .VBX CUSTOM control in your report. There are a
number of custom control libraries available which are very suitable for
reports—including graphs and other visual elements. To place the
control:

1. Select the .VBX tool from the Controls toolbox, or choose Controls
➤ Custom Control .

2. CLICK inside the band which will hold the control.

The center of the crosshair positions the upper left corner of the
custom control. When you CLICK, the Select Custom Control dialog
appears. Use this dialog to select a custom control.

3. Press the OK button.

The Report Formatter places a CUSTOM control within the report
structure. Resize and relocate the custom control by dragging its
handles or its interior.

4. DOUBLE-CLICK the control you just placed.

The Custom Control Properties dialog appears.

5. In the Text field, type a caption for the control.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

The .VBX control may or may not display its title on the page,
depending on the .VBX you use.

6. In the Use field, type the name of a variable.

The variable type depends on the .VBX control. The variable value
is passed to the .VBX control. Please see the Setting Control
Properties chapter for additional details.

7. Optionally, check the Meta box to print the control as a metafile.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

UUUUUSINGSINGSINGSINGSING THETHETHETHETHE T T T T TEXTEXTEXTEXTEXT E E E E EDITDITDITDITDITOROROROROR

Whether using it to add Embedded Source
Code in a procedure, or writing code
“from scratch,” the text editor is a full
strength easy-to-use programmer’s editor.

The text editor features
color coded syntax
highlighting to help make
reading your code easier.

Customize the color coded
syntax highlighting to suit
your preferences.

The text editor includes full
search and replace
capabilities.

Set editing options to your
preferences.

1313

CHAPTER 13 USING THE TEXT EDITOR

This chapter introduces the Text Editor. If you allow the Application
Generator to write most of your source code, you will probably only
use the Text Editor to write your embedded source code. If you write
your source code “from scratch,” you will probably use the Text
Editor extensively to create and manage your code. The Text Editor
features the following to help you accomplish either purpose:

◆ Multiple Document Windows, in which you may edit as many
documents as your system allows.

◆ Color coded syntax highlighting, which makes reading
individual code lines easier. The color coding is fully
customizable.

◆ Always available Search and Replace for any strings.

◆ Auto-indent, to make reading code easier.

◆ Next Error and Previous Error locator.

◆ Current cursor position (row and column), displays on the status
bar.

OPENING THE TEXT EDITOR

Anytime you view a source code document with Clarion, you use the
Text Editor. Here are several ways to open a source code document:

❏ Use the File ➤ New command, then select the Source tab
in the New dialog. Navigate to your source directory and
fill in the name of your new file in this standard dialog.
Then press the Create button. This opens a blank source
code document.

The New dialog allows
you to create a new

Clarion Source code
document.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

❏ Use the File ➤ Open command, select the Source tab, then
DOUBLE-CLICK a source code file in the standard Open File
dialog.

❏ Use the File ➤ Pick command to view your most recently
edited files. Select the Source tab, highlight a source code file,
then press the Select button.

❏ Within the Project Editor dialog, highlight a source code
(.CLW) file, then press the Edit button. The Edit button is
only enabled for hand coded projects.

❏ After a compile that generates errors, press the Edit Errors
button.

MANAGING TEXT EDITOR WINDOWS

Each source code file appears in a separate document window. This
section provides a summary of actions you can take to change the layout
of these windows:

Close a window Choose File ➤ Close from the main menu, or
choose Close from the window’s system menu,
or double click the window’s system menu, or
press CTRL+F4.

The Editor ’s document
window features color

coded syntax
highlighting.

CHAPTER 13 USING THE TEXT EDITOR

Activate a window Click anywhere within the window, or select the
document name from the Window menu.
Alternatively, press CTRL+F6, or CTRL+TAB until
the window you wish is active.

Move a window Drag the document window’s title bar with the
mouse. Alternatively, choose Move from the
window’s system menu, then use the cursor
keys, then press ENTER to set the window in
place.

Resize a window Drag its border with the mouse. Alternatively,
choose Size from the window’s system menu,
use the cursor keys to resize, then press ENTER to
resume editing.

Maximize a window
Press the maximize button on the document
window’s title bar; or choose Maximize from
the window’s system menu.

Iconize a window Press the minimize button on the document
window’s title bar; or choose Minimize from the
window’s system menu.

Restore iconized To restore an iconized document window,
double click the document window icon; or
choose Restore from the icon’s system menu.

Cycle to next window
To switch to the next window, press CTRL+F6 or
CTRL+TAB.

Tile the windows To arrange all open document windows side by
side, choose Window ➤ Tile vertically or
Window ➤ Tile horizontally from the main
menu. This provides easy access to documents,
as in the illustration below.

Cascade windows To arrange all open document windows so that
the title bars are all visible, choose Window ➤
Cascade from the main menu.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

USING THE TEXT EDITOR TOOLS

Typing and editing source code with the Text Editor is similar to typing
documents with most word processor program. Type the code as if you
were typing at a typewriter, then use the various Text Editor tools and
commands to rearrange, duplicate, and modify your code.

Using the Edit Menu

To use an editing command, such as Cut or Copy , highlight the text you
wish the command to act upon, then choose the command from the
menu or the toolbar.

When you wish to insert text, click with the I-Beam cursor at the place
you wish to insert text, then type or Paste the new text.

The Edit menu features the primary editing commands. The following
sections detail the commands on the Edit menu:

Undo

To undo the most recent editing action, choose the Undo command. This
menu item changes to which action will be undone. Should you type a
line of text, the menu item will show that you may Undo Line Edits .
Should you delete a line of code, it will allow you to Undo Block
Delete .

Certain commands cannot be undone, such as a File Save, or a Replace
All.

Cut

To delete the highlighted text from the document and hold it in the
clipboard, choose the Cut command. The keyboard accelerator is
CTRL+X. The toolbar button with a scissors icon also activates this
command.

Copy

To copy the highlighted text and hold it in the clipboard, use the Copy
command. The keyboard accelerator is CTRL+C. The toolbar button with
the overlapping pages icon also activates this command.

CHAPTER 13 USING THE TEXT EDITOR

Paste

To place the contents of the clipboard (text only) into the document at the
insertion point use the Paste command. The keyboard accelerator is
CTRL+V. The toolbar button with the page on clipboard icon also activates
this command.

Select All

To highlight all the text in the document so that the next editing
command affects the entire document, choose the Select All command.

Goto Line

To jump to a specific source code line to edit, choose Goto Line . The
keyboard accelerator is CTRL+G.

The Text Editor places the insertion point in the first column of the line
number you type in the dialog box. The status bar reflects the current
line and column numbers for the insertion point position.

Goto Next Error

To move the insertion point to the next compiler error, choose this
command. The Editor places the cursor at the part of the statement where
it detected the error. This command is only enabled following a compile
which generated errors.

Goto Previous Error

To move the insertion point to the previous location at which the source
code generated a compiler error, choose this command. The Editor
places the cursor at the part of the statement where it detected the error.
This command is only enabled following a compile which generated
errors.

Set/Clear Tabstop

Places or removes a custom tab stop at the insertion point.

Type a line number in
the Goto Line dialog.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Duplicate Line

To duplicate the entire line and insert the copy on the next line,
choose this command or press CTRL+2. The original line need not be
highlighted; simply position the cursor anywhere on the line.

Toggle Case

To change the case of next character following the insertion point,
choose this command or press CTRL+/. A lower case letter becomes
upper case, and vice versa.

Delete Line

To delete the entire line on which the insertion point is located,
choose this command, or press CTRL+Y.

Delete Word

To delete the word following the insertion point, choose this
command, or press CTRL+T.

Format Structure

Think of this as ‘visually editing’ a window or report. Just place the
insertion point on any line within the structure, and choose this
command, or press CTRL+F. The toolbar button with the pencil and
paper icon also activates this command. The Window Formatter (or
Report Formatter) displays a visual representation of the structure,
ready for editing.

When you exit the Window Formatter (or Report Formatter), your
source code reflects the changes you made. This provides seamless
interaction at the source code level with the visual design tools.

You may also place the insertion point on a blank line, then call the
Window Formatter to create a new structure. When you return to the
Text Editor, the source code document will contain the new structure
you created with the Window Formatter (or Report Formatter). Be
sure to place the structure in the data section of the program.

CHAPTER 13 USING THE TEXT EDITOR

Using The Tool Bar

The Text Editor toolbar provides quick access to the most frequently
used edit commands: Cut, Copy, Paste, and Format Structure. These
commands are the same commands accessed with the edit menu.
Additionally there is a print button to call the standard windows
print dialogs. CLICK these buttons to quickly access your favorite
commands.

Using the Search Menu

The Search menu makes it easy to find and change text in your
source code documents. You may search for specific text, change
single or multiple occurrences of text throughout the document, or
simply highlight a variable, then jump to the next occurrence of it in
the code.

The commands on the Search menu are:

Find

To find the next occurrence of a word, type it in the Find dialog and
press the Find Next button. The keyboard accelerator is ALT+F3.

The Find dialog is modeless. This means that the dialog will remain
on screen so that you may easily search again.

Cut Copy Paste Print Format Prev Next
 Structure Error Error

The Find dialog,
searching for
“EQUA TES.”

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

1. In the Find What field, type the text to search for.

The default contents of the Find What field is the last text searched
for.

2. Optionally check the Match whole word only box, the Match case
box, or both.

For example if you search for ‘find’ with Match whole word only ,
you will not get ‘findings.’ If you search for ‘Find’ with Match case
you will not get ‘find.’

3. Specify whether to search upwards or downwards.

4. Press the Find Next button to start the search.

Replace

To change a specific text string, type the original text and the
replacement text in the Replace dialog. You may make the changes one
at a time, throughout a selected text block, or throughout the entire
document.

The Replace dialog is modeless. This means that the dialog will remain
on screen so that you may easily search and replace again.

1. In the Find What field, type the original text to search for.

The default contents of the Find What field is the last text searched
for.

2. In the Replace with field, type the replacement text.

The default contents of the Replace with field is the previous
replacement text.

3. Optionally check the Match whole word only box, the Match case
box, or both.

The Replace dialog —
changing the name of

an equate from
?MainExit to

?GoodBye.

CHAPTER 13 USING THE TEXT EDITOR

For example if you search for ‘find’ with Match whole word only ,
you will not get ‘findings.’ If you search for ‘Find’ with Match case
you will not get ‘find.’

4. Press the Find Next button to display the next occurrence of the
original text and stop before changing it.

The dialog will ask you to confirm the change.

5. Press the Replace button to replace the next occurrence of the
original text without confirmation.

6. Press the Replace All button to change all the occurrences of the
original text without confirmation.

Replace All operates only on the selected block of text. If no text is
selected, it operates on the entire document.

Find Next

To search for the same text you last searched for, choose this command
or press the F3 key. This searches in a ‘forward’ direction.

Find Previous

To search for the same text you last searched for in a backward
direction, choose this command or press SHIFT+F3.

Find Marked Text

To quickly find the next occurrence of the currently highlighted text,
choose this command or press CTRL+F3. This is equivalent to executing
the Find command, typing the currently selected text in the Find What
field, and specifying a forward search.

Using the File Menu

The Text Editor File menu has the following special file oriented
commands.

Save All

To save all open source files, choose this command.

Import File

Calls the Open File dialog, allowing you to insert the contents of a file
into the currently active source code document, at the insertion point.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Export Block

Saves the currently selected text in a new source code document under a
new name which you specify.

CUSTOMIZING THE TEXT EDITOR

To personalize your editing environment, customize appearance and
cursor behavior with the Editor Options dialog. To view the dialog,
choose Setup ➤ Editor Options . Select the corresponding tab to set
specific Text Editor options.

Insertion Options

Indent New Line To automatically give a new line the same
indention as the previous line, check this box.
This will make your code more readable.

Insert Within Column
When the insertion point is in the middle of a
line, ENTER adds a new line after the current line.

Automatic Word-wrap
To cause automatic line breaks at column 70,
check this box.

Split Line at Cursor When this box is checked, ENTER will split
the current line at the insertion point (cursor).
The second part of the line will appear on a new
line. When this box is not checked, ENTER inserts
a blank line below the current line, without
splitting the current line.

The Editor Options
dialog, with custom

preferences set.

CHAPTER 13 USING THE TEXT EDITOR

Tab Size To set the default spacing between tabs, enter a
number in the Tab Size box.

Block Options

Automatic Block Delete
To delete the selected text when pasting, check
this box. To insert before a selected block,
uncheck the box.

Remove Block On Copy
To delete the selected text when copying, check
this box.

Color Options

These options allow you to set color choices for twenty-one different
Clarion language elements. Make Clarion keywords appear in red, or
make equates appear in green.

Select a language or text element in the Color Groups list box, then
CLICK on a color selection box. The sample text shows you how the
selected language element will appear in the Text Editor.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Color Groups Highlight the language or text element to
receive a color assignment.

Color To assign a color to the selected language
element, CLICK on a color selection box.

Default To assign the default color to the selected
language element, check this box.

Custom To reset the custom color for the selected
language element, check this box.

Sample Text Shows how the selected language element will
appear in the Text Editor.

Enabled To apply the color syntax highlighting to the file
types listed in the Source Extensions box,
check this box.

Source Extensions
To specify the file types that color syntax
highlighting is applied to, type a list of file
extensions separated by semicolons.

Restore Defaults To assign the default colors to all language and
text elements, check this box.

Save Options

Make Backup Files
To cause the Text Editor to make a backup file
(.BAK) each time you explicitly save a source
file, check this box. The .BAK file contains the
source as it was previously saved.

CHAPTER 13 USING THE TEXT EDITOR

Prompt for Reload if file changed
To receive a “source.CLW has changed on disk.
Do you want to reload?” message whenever the
Text Editor detects such a change, CHECK THIS

box.

Automatic Save time (minutes)
To specify the time interval between automatic
saves, type a number in this box.

EDITING ERRORS

One of the chief entry points into the Text Editor is through the
compilation results dialog—when an error aborts the make.

The Edit errors button automatically calls the Text Editor, and places
the insertion point at the position where the compiler detected the error.
You may then edit the source code to correct the mistake. The Edit ➤
Goto Next Error command is available to jump to the next compilation
error once you correct the first error.

Note: When entering the Text Editor through the compilation
results dialog, any changes made to generated code will be
overwritten by the next project generate or make.

The Edit Errors button
in the compile results
dialog opens the text

editor.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

1414

UUUUUSINGSINGSINGSINGSING THETHETHETHETHE F F F F FORMULORMULORMULORMULORMULAAAAA E E E E EDITDITDITDITDITOROROROROR

The Formula Editor helps you to
quickly generate a statement
assigning an expression to a variable.
You can use the Formula Editor to
create computed fields or conditional
fields.

The Formulas dialog
organizes and manages all
the formulas for your
procedure.

The Formula Editor creates
valid expressions at the
push of a button.

The Conditionals dialog
creates control structures
for conditional formulas.

The Functions dialog
provides quick access to
all Clarion functions.

CHAPTER 14 USING THE FORMULA EDITOR

The Formula Editor helps you to quickly generate a statement assigning
an expression to a variable. You can use the Formula Editor to create
computed fields or conditional fields .

◆ A computed field receives the evaluation of an expression. In other
words, a computed field is the receiving end of a simple assignment
statement: variable = expression. For example, a computed field
called GrossPrice might receive the result of adding two fields called
BasePrice and Tax.

You can use a computed field wherever the program must perform a
calculation.

◆ A conditional field is a computed field with multiple possible
assignments. There are two types of conditional fields—IF structures
and CASE structures. The assignment statement executed depends
on the evaluation of the IF or CASE condition. For example, a
conditional field called “Tax” could equal 0 when “Taxable” (the IF
condition) evaluates as false, or “Tax” could equal Price times
TaxRate if “Taxable” is true.

You can use a conditional field wherever the program must perform
different calculations based on a condition.

The Formula Editor dialog provides access to data dictionary fields, as
well as global and local memory variables, and facilitates creating
syntactically correct expressions. This is its prime advantage: automatic
syntax checking.

To create an expression, you press buttons to add expression components
to the Statement line. You can also type in your expression, and check the
syntax upon completion.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

EXPRESSION COMPONENTS

An expression is made up of two types of components: operands and
operators. Operators perform an operation (such as addition, subtraction,
etc.) on one or more components of an expression. Operands are the
components on which operations are performed. Operands either contain
or return a value. Constants, data dictionary fields, memory variables,
and functions are examples of operands. An operand can be made up of a
combination of more than one component, such as a function and its
parameters.

The Formula Editor allows you to choose operators and operands, then
insert them into the Statement line.

The table below lists all the components used in expressions.

Math Operators

+ Plus sign: Adds two operands together.

- Minus sign: Subtracts one operand from
another.

* Asterisk: Multiplies one operand by another.

/ Slash: Divides one operand by another.

% Percent sign: Returns the remainder from a
division operation (modulus division).

& Ampersand: Appends one text string to another.

^ Caret: Raises one operand to the power of the
other.

() Parentheses: Groups components together
within an expression.

Logical Operators

= Equal: Evaluates whether one expression is
equal to the other.

< Less Than: Evaluates whether one expression is
less than the other.

> Greater Than: Evaluates whether one expression
is greater than the other.

<> Not Equal: Evaluates whether one expression is
not equal to the other.

CHAPTER 14 USING THE FORMULA EDITOR

>= Greater or Equal: Evaluates whether one
expression is greater than or equal to the other.

<= Less or Equal: Evaluates whether one
expression is less than or equal to the other.

AND Connects two logical expressions together. For
an expression containing an AND to be true,
both expressions of the AND must be true.

OR Connects two logical expressions together. An
expression containing an OR is true if either
expression of the OR is true.

XOR Connects two logical expressions together. An
XOR expression is true if either expression is
true, but not both.

NOT Reverses the evaluation of an expression.

Operands :

Data Includes data dictionary fields, global and local
memory variables.

Functions All of the built-in functions of the Clarion
programming language. These functions all
perform some operation on parameters (other
operands) and return a value to the expression.

User Any FUNCTION in your application. These
functions perform some operation on parameters
(other operands) and return a value to the
expression.

Constant Text You can type constant text surrounded in single
quotes (‘A’) on the Statement line.

Constant Number You can type constant numbers on the
Statement line. Constant numbers can be
represented in any valid format, such as Decimal
(1 or 1.2345), Scientific Notation
(22e4), Binary (0101b), or Hexadecimal
(1AFFh).

FORMULA EDITOR TOOLS

The Formula Editor consists of three dialog boxes:

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Deletes the
highlighted

formula

Selects the
highlighted

formula for editing
List of Formulas
for a procedure

with its execution
class and a
description

Enables creation of
a new formula

Formulas Manages all the formulas you have created for
the procedure.

Formula Editor Creates simple assignment statements.

Conditionals Creates conditional structures (IF..THEN or
CASE..OF).

Formulas Dialog

Formula Editor

Creates Conditional structures

Accesses
FUNCTIONS

in your
application

Accesses Clarion’s
built-in functions

Operator buttons

Displays additional
information about an

expression’s
component

Validates your
expression’s syntax

Variable to which the
value is assigned

Determines when the
expression is evaluated

A descriptive label

Accesses the Data
Dictionary fields

and memory
variables

CHAPTER 14 USING THE FORMULA EDITOR

Conditionals Dialog

CREATING AN ASSIGNMENT EXPRESSION

❏ From the Procedure Properties dialog:

1. Press the Formulas button.

If you already have formulas in the procedure, the Formulas dialog
appears.

If this is the first formula in this procedure, the Formulas dialog
will not appear. The Formula Editor dialog appears, so skip step 2.

2. Press the New button.

The Formula Editor dialog appears.

3. In the Name field, type a name for the formula.

4. Press the ellipsis (...) button next to the Class field to choose a
Formula Class.

Expression to insert
into the structure

Control structure
expanding tree

Creates an IF
structure

Creates or expands
a CASE structure

Accesses
FUNCTIONS

in your
application

Accesses Clarion’s
built-in functions

Operator buttons

Accesses the Data
Dictionary fields

and memory
variables

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

 A formula class determines where in the generated source code, its
calculation is performed. Each Clarion procedure template has its
own set of formula classes. For example, in the Form Template there
is a class called “After Lookups” which tells the Application
Generator to compute the formula after all lookups to secondary files
are completed for the procedure.

Note: Do not confuse formula classes with template classes. A
template class is simply a group of templates, Clarion or third-
party, within the template registry. A formula class is a point
within a procedure template where the formula is evaluated.

5. In the Description field, type a description of the formula.

6. In the Result field, type the variable to which the result of the
expression is assigned, or press the ellipsis (...) button to choose a
variable from the Select Field dialog.

You can choose a local, module, or global variable, or a data
dictionary field. This name appears in the Formulas dialog list.

7. In the Statement field, create your formula.

You may type the expression, use the Formula Editor’s buttons, or
both. The first component of an expression must be an operand, a
left parenthesis, or a unary minus (the negative sign). For example,
press the Data button and choose a variable, press the Multiply by
(*) button, then press the Functions button to choose a Clarion
built-in function.

Some of the built-in
Clarion functions

you can choose
from.

Choosing a formula
class.

CHAPTER 14 USING THE FORMULA EDITOR

8. Press the Check button to check the syntax of the expression.

If the syntax is correct, a large green check mark appears to the left
of the statement. If the syntax is incorrect, a large red X appears.

9. Press the OK button.

CONDITIONAL EXPRESSIONS

Creating conditional expressions with the Formula Editor actually
creates control structures in the source code. There are two structures
you can create with the Formula Editor —an IF or a CASE structure.
You can also nest either of these structures, creating complex conditional
statements.

An IF structure assigns a value to the Result variable based on the true/
false evaluation of a single logical expression. There are only two
possible assignments, because only one condition is tested for. If the
condition tested is true, one assignment is made, if not true (false), then
the other assignment is made.

Nesting IF structures allows additional alternative assignments.
However, the CASE structure offers a less complicated method for
assigning values based on the evaluation of multiple logical expressions.

A CASE structure selectively assigns a value to the Result variable based
on the evaluation of multiple OF expressions against the CASE
expression. Practically speaking, there are unlimited alternative
assignments because any number of expressions may be evaluated. See
the Language Reference for more information.

Creating an IF Structure

Use a simple IF structure to assign one of two values to the Result field
depending on a condition. For example, you may want to determine the
tax for an order. The tax depends on a condition—is the customer
taxable or nontaxable? The resulting control structure would be:

IF CUS:Taxable ! conditional expression
 TAX = ORD:Total * CUS:TaxRate ! True assignment expression
ELSE
 TAX = 0 ! False assignment expression
END

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

The control structure in the Conditionals dialog would look like the
illustration below.

❏ To create an IF conditional formula (from the Procedure
Properties dialog):

1. Press the Formulas button.

If you already have formulas in the procedure, the Formulas dialog
appears.

If this is the first formula in this procedure, the Formulas dialog
will not appear. The Formula Editor dialog appears, so skip step 2.

2. Press the New button.

The Formula Editor dialog appears.

3. In the Name field, type a name for the formula.

4. Press the ellipsis (...) button next to the Class field to choose a
Formula Class.

 A formula class determines where in the generated source code its
calculation is performed. Each Clarion procedure template has its
own set of formula classes. For example, in the Form Template there
is a class called “After Lookups” which tells the Application
Generator to compute the formula after all lookups to secondary files
are completed for the procedure.

Note: Do not confuse formula classes with template classes. A
template class is simply a group of templates, Clarion or third-
party, within the template registry. A formula class is a point
within a procedure template where the formula is evaluated.

5. In the Description field, type a description of the formula.

6. In the Result field, type the variable to which the result of the
expression is assigned, or press the ellipsis (...) button to choose a
variable from the Select Field dialog.

CHAPTER 14 USING THE FORMULA EDITOR

You can choose a local, module, or global variable, or a data
dictionary field. This name appears in the Formulas dialog list.

7. Press the Conditionals button.

8. Press the IF..THEN button.

The structure appears in the Structure window.

9. On the Statement line, enter the IF condition to evaluate.

You can type the expression, or you can use the Operators and
Operands buttons to select expression components, or you can do
both.

10. Press the Check button to check your syntax.

11. Press the Accept button to insert your expression into the structure.

12. Highlight the line below the IF line in the Structure window.

This is where the “True” assignment expression goes.

13. On the Statement line, enter the “True” assignment expression.

Again, you can type the expression, or you can use the Operators
and Operands buttons to select expression components, or you can
do both. If the IF condition is true, this expression is evaluated and
the resulting value is assigned to the Result variable.

A “true” assignment expression is not required. If no assignment is
entered, then no assignment is made.

14. Press the Check button to check your syntax.

15. Press the Accept button to enter your expression into the structure.

16. Highlight the line below the ELSE line in the Structure window

This is where the “False” assignment expression goes.

17. On the Statement line, insert the “False” assignment expression.

Again, you can type the expression, or you can use the Operators
and Operands buttons to select expression components, or you can
do both. If the IF condition is false, this expression is evaluated and
the resulting value is assigned to the Result variable.

A “false” assignment expression is not required. If no assignment is
entered, then no assignment is made.

18. Press the Check button to check your syntax.

19. Press the Accept button to insert your expression into the structure.

20. When your control structure is complete, press the OK buttons in the
Conditionals, Formula Editor, and Form ulas dialogs.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Creating a CASE Structure

A simple CASE structure can be used to assign one of several values to
the Result field depending on which OF expression is equal to the CASE
expression. For example, you may wish to offer varying discounts for
large purchases depending on the customers discount code. The resulting
CASE structure might be:

CASE CUS:DiscountCode !CASE expression, compared to OF expressions
 OF ‘A’ ! 1st OF comparison expression
 Discount = 0 ! 1st OF assignment expression
 OF ‘B’ ! 2nd OF comparison expression
 Discount = ORD:Total * .1 ! 2nd OF assignment expression
 OF ‘C’ ! 3rd OF comparison expression
 Discount = ORD:Total * .15 ! 3rd OF assignment expression
 ELSE
 Discount = 0 ! catchall assignment
END

This control structure appears in the formula editor as in the illustration
below.

❏ To create a CASE conditional formula (from the Procedure
Properties dialog):

1. Press the Formulas button.

If you already have formulas in the procedure, the Formulas dialog
appears.

If this is the first formula in this procedure, the Formulas dialog
will not appear. The Formula Editor dialog appears, so skip step 2.

2. Press the New button.

The Formula Editor dialog appears.

3. In the Name field, type a name for the formula.

CHAPTER 14 USING THE FORMULA EDITOR

4. Press the ellipsis (...) button next to the Class field to choose a
Formula Class.

 A formula class determines where in the generated source code its
calculation is performed. Each Clarion procedure template has its
own set of formula classes. For example, in the Form Template there
is a class called “After Lookups” which tells the Application
Generator to compute the formula after all lookups to secondary files
are completed for the procedure.

Note: Do not confuse formula classes with template classes. A
template class is simply a group of templates, Clarion or third-
party, within the template registry. A formula class is a point
within a procedure template where the formula is evaluated.

5. In the Description field, type a description of the formula.

6. In the Result field, type the variable to which the result of the
expression is assigned, or press the ellipsis (...) button to choose a
variable from the Select Field dialog.

You can choose a local, module, or global variable, or a data
dictionary field. This name appears in the Formulas dialog list.

7. Press the Conditionals button.

8. Press the CASE..OF button.

The CASE structure appears in the Structure window.

9. On the Statement line, enter the CASE expression that is compared
to the multiple OF expressions.

You can type the expression, or you can use the Operators and
Operands buttons to select expression components, or you can do
both.

10. Press the Check button to check your syntax.

11. Press the Accept button to insert your expression into the structure.

12. Highlight the OF line below the CASE line in the Structure
window.

This is where the first OF comparison expression goes.

13. On the Statement line, enter the OF comparison expression.

Again, you can type the expression, or you can use the Operators
and Operands buttons to select expression components, or you can
do both. At runtime, if the CASE expression equals this OF
expression, then the subsequent assignment expression is evaluated
and the resulting value is assigned to the Result variable.

14. Press the Check button to check your syntax.

15. Press the Accept button to insert your expression into the structure.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

16. Highlight the line below the OF line in the Structure window.

This is where the first OF assignment expression goes.

17. On the Statement line, insert the OF assignment expression.

Again, you can type the expression, or you can use the Operators
and Operands buttons to select expression components, or you can
do both. At runtime, if the CASE expression equals the above OF
expression, then this assignment expression is evaluated and the
resulting value is assigned to the Result variable.

18. Press the Check button to check your syntax.

19. Press the Accept button to insert your expression into the structure.

❏ To add additional OF statements:

1. Highlight an OF line in the Structure window.

2. Press the Case..OF button

3. Insert your expressions in the same manner as above.

4. When your control structure is complete, press the OK buttons in the
Conditionals, Formula Editor, and Form ulas dialogs.

Nesting Control Structures

Either of the available control structures can be nested inside another.
This enables you to easily create very complex structures.

Lets say you wanted to determine the TaxRate based on the following
logic:

If the state is Florida, the TaxRate is 6 %, unless the City is Miami,
which charges 6.5 %.

If the State is Georgia, the Tax Rate is 5%.

CHAPTER 14 USING THE FORMULA EDITOR

You would create a CASE structure, with a nested IF structure as
displayed below.

❏ To add a nested control structure:

1. Highlight an assignment line in the Structure window.

2. Press either the CASE..OF or IF..THEN button

3. Insert expressions on the appropriate lines following the instructions
in the previous sections.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

1515

UUUUUSINGSINGSINGSINGSING THETHETHETHETHE P P P P PROJECROJECROJECROJECROJECTTTTT S S S S SYYYYYSSSSSTEMTEMTEMTEMTEM

This chapter shows you how to use
the Project System. The Project
System controls compile and link
options. This chapter also contains
information on distributing your
applications.

Start by giving the
project a name. When
you select your main
source code file from a
directory list, Clarion
automatically fills in
most of the dialog box
items.

Set global compiler
options and
optimizations.

Add, delete and edit
properties for source
code, external libraries,
and object files.

CHAPTER 15 USING THE PROJECT SYSTEM

The project file (.PRJ) tracks all the components that are used to create
the final executable (target file) for your application. It also stores the
compiler options ranging from whether to include debug code or not, to
setting a preferred optimization method. The compiler and the linker
depend on the project file to tell them how, and what, to compile and
link. The project file is functionally equivalent to a MAKE file for other
language compilers.

The Clarion Project System visually manages the project file. It
maintains tree diagrams of the source files, external libraries, resources,
and other project components.

This chapter discusses the Project System and related topics. It will:

◆ Describe the various menu commands that set Project System
options.

◆ Show you how to add your source code files to the Project Tree.

◆ Show you how to add external libraries to the Project Tree, and how
to access their functions and procedures in your source code.

◆ Show you how to specify the target file and set other compiler
options. The target file is the ultimate executable created for your
application.

THE PROJECT MENU

Clarion’s development environment menu provides several commands
which affect or access the Project System. This section provides a list of
the commands and what they do. To access these commands, choose
Project from the action bar.

The Project Editor
dialog contains the

Project Tree list. The
tree controls e xpand
and contracts when

you click them. When
expanded, they list the
component files. When

contracted, the box
contains a cross to
show that you can

expand the control.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Set Makes a project current, so that subsequent
project commands such as make and run operate
on the selected project. The Select Project
dialog appears; select a .PRJ or .APP file from
the list box.

New Creates a new project. Fill in the Project Title
and Main file fields in the New Project File
dialog.

Load Makes a project current, so that subsequent
project commands such as make and run operate
on the selected project.

If no project is current, the Select Project
dialog appears; select a .PRJ or .APP file from
the list box.

Displays either the Application Tree dialog or
the Project Editor dialog depending on whether
a .PRJ or .APP file was selected.

Edit Allows you to edit the current project file with
the Project Editor dialog.

Make Allows you to compile and link the current
project. You can also press the Make button on
the toolbar.

Run Allows you to compile, link, and run the current
project.

Debug Allows you to compile and load the current
project into the debugger.

The Project Menu.

CHAPTER 15 USING THE PROJECT SYSTEM

Make Statistics Allows you to view a statistical profile of the
most recent make. Information on the size of
each module, including code and data size, will
appear in the Make Statistics dialog.

Auto make before run
Toggles the Project System setting which forces
a recompile each time you choose the Run
command.

File save before run
Toggles the Project System setting which saves
the source code file each time you choose the
Run command.

Minimize on Run Toggles the Project System setting which
minimizes the Development Environment before
displaying the application each time you choose
the Run command.

Wait for termination on run
Toggles the Project System setting which
suspends the development environment until
after you terminate the application upon
executing it with the Run command.

Generate Generates source code for any procedures in the
project that have changed.

Generate All Generates source code for all procedures in the
project.

Properties Edits the current project file with the Project
Editor dialog.

EDITING THE REDIRECTION FILE

Clarion’s development environment sets the working directory to the one
in which the current .APP or .PRJ file resides. Additionally, Clarion for
Windows uses the redirection file (CW15.RED) to keep track of
directories for the development environment’s components. This file tells
the development environment where to find files and where to create new
files. Each line of the redirection file is in the format:

filepattern = directory1 [;directory2]... [;directoryn]

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

The filepattern can be a file name or a file pattern using the standard
DOS wild card characters: * and ?.

For example:

*.dbd = c:\cw15\obj
*.dll = .;c:\cw15\bin
*.lib = c:\cw15\obj;c:\cw15\lib
*.res = c:\cw15\obj;c:\cw15\lib
*.obj = c:\cw15\obj;c:\cw15\lib
*.rsc = c:\cw15\obj
*.ico = .;c:\cw15\template
*.bmp = .;c:\cw15\template
*.tpl = c:\cw15\template
*.tpw = c:\cw15\template
*.trf = c:\cw15\template

. = .; c:\cw15\examples; c:\cw15\libsrc

QCKSTART.TXA = c:\cw15\TEMPLATE
QCKSTART.TXD = c:\cw15\TEMPLATE

The first directory is the directory in which any new file of the type
specified by the filepattern is created. This is only true for files created
and saved by the development environment, such as .OBJ, .DBD, .LIB,
.EXE, and .CLW. The subsequent directories are paths where Clarion
will search for existing files.

Note: Backup files are always created in the directory where the
original file is located.

To edit the redirection file, choose Setup ➤ Edit Redirection File . The
text editor opens the CW15.RED file for editing. File patterns appear on
the left; directory paths on the right.

❏ To change the default path for a file type, select the current
path by DOUBLE-CLICKING, then type over it with the new path.

❏ To append an additional subdirectory onto the search path for
a file pattern, add a semicolon at the end of the current path,
then add the subdirectory.

CREATING A PROJECT FILE FOR A HAND CODED APPLICATION

This section provides an overview of the steps necessary to create a
project file (*.PRJ). The Project file tracks all the components that are
used to create the final executable for your application. It also sets the
compiler options ranging from whether to include debug code or not, to
setting a preferred optimization method.

CHAPTER 15 USING THE PROJECT SYSTEM

If you use the Application Generator to create your source code, no
separate .PRJ file is created, and the only thing you will probably use the
Project System for is to set debugging options. The Application
Generator takes care of maintaining most everything else for you.
Therefore, this chapter describes how to use the Project System for hand-
coded applications.

The Project Tree dialog organizes all the components, and provides
access to other dialogs that manage your project file.

❏ To create a project file, take these steps:

1. Choose Project ➤ New.

The New Project dialog appears.

2. In the Use box, CLICK on Hand Coded Project .

3. In the Working Directory combo box, type a directory path, or press
the ellipsis (...) button to choose a directory with the standard Open
File dialog.

4. Press the OK button.

The New Project File dialog appears.

5. In the Project Title field, type a descriptive name for your project.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

6. In the Main File field, type the name of your main source code file,
or press the ellipsis (...) button to choose a source file with the
standard Open File dialog.

This step automatically fills in the Target file and Project file names
as well. If you wish to set a different name for either, type new
names, or press the corresponding ellipsis (...) button to choose a file
with the standard Open File dialog.

7. Press the OK button.

 The Project Tree dialog appears.

8. CLICK on Database driver libraries , then press the Add File button.

The Select Driver dialog appears.

The Add File button has a different effect, depending on which
Project Tree folder is highlighted. In this case, it calls the Select
Driver dialog so you can choose from a list of valid Clarion database
drivers. In all other instances, the Add File button opens a standard
Open File dialog to help you locate the file to include in your
project’s compile and link process. If you choose the wrong type of
file, the Project System adds the file to the appropriate Project Tree
folder.

9. Select a database driver, and press the OK button.

10. CLICK on the Project: (first) line, and press the Properties button.

The Global Options dialog appears. This dialog sets various
compile and link options for your entire project, including
optimization method, type of executable created, whether to include
debug code, etc.

Once you press the
ellipsis button and select
a Main File, the last three

fields fill in automatically.

CHAPTER 15 USING THE PROJECT SYSTEM

Like the Add File button, the Properties button behaves differently
depending on which Project Tree folder is highlighted. When a
source file is highlighted, the Properties button calls the Compile
Options dialog. This dialog sets compile options for the specific
source file highlighted. Specific compile options take precedence
over global compile options.

For now, press the tabs in the Global Options dialog to get an idea
of the available options, or press the Help button to see a description
of each option. When you are finished, press the OK button. See
Setting Project File Options below, for more details on setting these
compile and link options.

11. Press the OK button, then CLICK on Yes when asked if you want to
save the project file.

MAINTAINING A PROJECT

This section provides an overview of the steps necessary to maintain a
project file. Maintaining the project file includes adding and removing
source files, object files, or libraries from the compile and link process.

Adding Source Code Files

Source code files are those files that contain your Clarion Language
statements (or other language statements, if you have TopSpeed
compilers to support them). Adding a source code file to the Project
Editor dialog is simply a matter of DOUBLE-CLICKING a file name.

❏ To add “hand-coded” source code files, highlight External source
files . Then press the Add File button and select the file you wish to
add with the standard Open File dialog.

If you choose the wrong type of file, the Project System adds the file
to the appropriate Project Tree folder.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Generated source modules cannot be added or deleted from the
Project System. They can only be added or deleted from the
Application Generator.

Any attempt to add source modules to the Generated source files
will add the source file to the External source files .

Adding Object Files and Libraries

An object (.OBJ) file is a file that contains an object (routines, functions,
or procedures) that can be linked into or added to your program during
the link process. A library (.LIB) file is simply a file that contains
multiple objects. When properly linked, your program can call on these
objects to perform certain tasks. You can create .LIB files for use with
your Clarion applications. See Setting the Target File below.

Objects used in this manner are called external, because the source code
for the objects is external to your project. That is, you don’t need the
object’s source code to use the object. Nor do the objects need to be
written in the same programming language. Your Clarion programs can
call objects compiled from C, C++, Pascal, etc.

Your application may call on the TopSpeed database driver routines to
access your TopSpeed files. These routines are in libraries supplied with
Clarion for Windows, and are placed in the CW15\LIB subdirectory by
the Clarion setup program. During the link process, references to these
external routines can only be resolved if the library containing the
routines is added to your project file.

❏ To link a database driver library, highlight Database driver
libraries in the Project Tree list. Then press the Add File button and
select the driver you wish to add from the Select Driver dialog.

CHAPTER 15 USING THE PROJECT SYSTEM

If you choose the wrong type of file, the Project System adds the file
to the appropriate Project Tree folder.

❏ To link another library or object file, highlight Library and object
files in the Project Tree list. Then press the Add File button and
select the file you wish to add with the standard Open File dialog.

 The .LIB or .OBJ file appears in the Project Tree, and any objects
from the file that are properly referenced in your source code are
linked into your target (executable) file.

Adding External Resources

One of the most likely things you’ll wish to do with the Project System
is to specify resources to link into the executable. These include graphics
(.BMP, .ICO and .WMF files). By linking them into the executable, you
can avoid having to ship them as separate, external files.

If you directly reference a graphic file within a data structure, the
compiler automatically links the graphic, so there is no need to add the
graphic file to your Project Tree. For example, if you place an IMAGE
control in a window, and specify a file by name in the Image Properties
dialog, the linker automatically includes that file in your executable. But
if you assign a different graphic to a control using a runtime property
assignment statement, the linker will only include the new file in your
executable if you add the file to your Project Tree.

❏ To add graphic files to the executable:

1. Highlight Library and object files and CLICK on the Add File
button.

Select the bitmap, icon, or metafile graphic from the standard Open
File dialog.

2. Press the OK button to return to the Project Editor dialog.

3. Highlight the source code file that references the graphic, and CLICK

on the Edit button.

The source code file is opened by the Text Editor.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

4. Place a tilde (~) in front of the graphic file name in the source code
assignment statement (not in data section).

For example: change ?Image{PROP:Text} = ‘I.ICO’ to
?Image{PROP:Text} = ‘~I.ICO.’ The tilde indicates the program
should find the item as a linked in resource, not as an external file.

Optionally, choose Search ➤ Find to locate the file name.

5. Choose File ➤ Exit , then CLICK on Yes when asked if you want to
save.

Now, when you recompile and link, the executable will no longer
require the external graphic file.

Adding Other Projects

The Project System can compile and link other projects referenced in the
current project file. The other project can even specify yet another, in a
cascading sequence of compile references.

Cascading projects allows you to split the development process into
separate projects, then link them all together when you’re ready.

❏ To add a project to the Project Tree, highlight Projects to include
in the Project Tree list. Then press the Add File button and select the
project file you wish to add with the standard Open File dialog.

CHAPTER 15 USING THE PROJECT SYSTEM

Adding Programs to Execute

Programs to execute allows you to customize the compile and link
process by executing the program(s) of your choice. These can be .BAT
files or more sophisticated .EXE files that perform any additional tasks
you specify as part of the compile and link process. The programs
execute in the order they appear in the Project Tree, commencing
immediately after the target file is made. That is, after the entire compile
and link process is completed.

❏ To add a program to execute to the Project Tree, highlight
Programs to execute in the Project Tree list. Then press the Add
File button and select the program file you wish to add with the
standard Open File dialog.

DISTRIBUTING FILES

This section is included to help you decide what kind of target file to
specify for your project. See Setting the Target File below.

Clarion for Windows produces true executable files which you may
distribute on a royalty-free basis. The applications you distribute require
Windows 3.10, 3.11, 95, or NT.

Clarion executables come in two flavors: .EXE files, and .DLL files. An
.EXE file is simply an executable program. A .DLL (Dynamic Link
Library) file is executable code that is linked into an .EXE file at run
time. This is in contrast to .OBJ and .LIB files which are linked into an
.EXE at compile time. The most obvious benefit of the .DLL is that it
provides a method of modifying .EXE operation, without remaking
(compiling and linking) the .EXE.

Clarion executables may be distributed in the following four
configurations, where xx is “16” or “32” depending on whether the
application is targeted to run on a 16-bit operating system (Windows
3.10, 3.11) or a 32-bit operating system (Windows 95 or Windows NT):

◆ *.EXE

A stand alone .EXE will usually be larger than an .EXE distributed
with .DLL(s). However, the stand alone .EXE will probably be
smaller than the combined sizes of an .EXE and its associated
.DLL(s).

The stand alone .EXE is made as small as possible by Clarion’s
smart linking process that only links in functions actually called by
the application program (whereas the .DLL contains a fixed set of
functions, whether or not they are actually called by your program).

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

A stand alone .EXE cannot have conflicts or problems that arise
from linking with the wrong .DLL(s) at run time.

Make (compile and link) time for a stand alone .EXE is greater than
for an .EXE combined with a .DLL.

◆ *.EXE + CWRUNxx.DLL

Splitting the executables between .EXEs and .DLLs allows for more
efficient use of disk space. Many Clarion applications (.EXEs) can
share a single CWRUNxx.DLL. Or, a single application suite with
several .EXEs can share a single CWRUNxx.DLL. However, as a
developer, you must ensure that your application accesses the correct
version of CWRUNxx.DLL.

An example of .DLL usage is the typical accounting system where
the .EXE controls the system main menu, and calls system subparts
such as Accounts Receivable and Accounts Payable from separate
.DLLs. This method of distribution allows for program parts to be
sold and maintained separately.

Splitting executables between .EXEs and .DLLs allows for more
efficient use of disk space, but less efficient use of RAM. This
is because Windows loads an additional CWRUNxx.DLL into
memory for each active Clarion for Windows executable, and
because the CWRUNxx.DLL contains some functions your
.EXE will never call.

◆ *.EXE + CWRUNxx.DLL + *.DLL1 + ... + *.DLLn

This configuration offers the same advantages and disadvantages as
the .EXE + CWRUNxx.DLL configuration. It is listed here to
illustrate that you are not limited to a single .DLL, nor are you
limited to Clarion .DLLs. Your Clarion applications may make use
of .DLLs compiled from other languages as well as the
CWRUNxx.DLL. See the Database Drivers Appendix for more
information on database drivers and their files.

◆ *.EXE + *.DLL
1
 + ... + *.DLL

n

This configuration offers most of the same advantages and
disadvantages as the .EXE + CWRUNxx.DLL configuration. It is
listed here to illustrate that the CWRUNxx.DLL may be linked into
another .DLL. This technique “hides” the CWRUNxx.DLL and
ensures that your application will never get the wrong version of
CWRUNxx.DLL, because, technically, it isn’t looking for
CWRUNxx.DLL.

If CWRUNxx.DLL is distributed, it must reside in the same directory as
the application, in the Windows\System subdirectory, or in any directory
referenced in the DOS PATH. TopSpeed recommends that you install
CWRUNxx.DLL to the application directory when you create a setup
program for distributing your applications.

CHAPTER 15 USING THE PROJECT SYSTEM

Remember, multiple Clarion for Windows applications may use the same
CWRUNxx.DLL file, avoiding the need to duplicate space on the users’
hard drive. On the other hand, using only one CWRUNxx.DLL raises the
possibility of conflicts among applications developed under different
versions of Clarion for Windows. To avoid possible conflicts, install a
separate CWRUNxx.DLL to each application directory, or distribute the
application as a single *.EXE file, or link the CWRUNxx.DLL into
another .DLL that is unique to your application.

SETTING THE TARGET FILE

Using the Project System, you may easily specify creation of .EXE,
.LIB, or .DLL files. This section provides you with information on
creating these target file types, as well as brief explanations of the file
types. See Adding Object Files and Libraries and Distributing Files
above for more information.

❏ The project system assumes by default that you wish to create a
standard executable (.EXE) file. When you name the project file in
the New Project File dialog, it automatically sets the target file
extension to .EXE.

❏ To create a library (.LIB file), simply change the target file extension
in the Project Tree. Highlight Target file in the Project Tree and
press the Add File button. Then type in the name of the .LIB file you
wish to create, including the file extension. Press the OK button.

❏ To create a dynamic link library (.DLL), change the target extension
in the Project Tree. Highlight Target file in the Project Tree and
press the Add File button. Then type in the name of the .DLL file
you wish to create, including the file extension. Press the OK button.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

.LIB Files

Library files contain (external) procedures and functions which are
linked to your application at compile time. To create library files which
may be accessed by Clarion for Windows, or by any of the other
TopSpeed compilers, just set a .LIB file as the target file.

To use procedures and functions from a precompiled .LIB file, you must
prototype the external procedures and functions called by your program.
Prototyping is accomplished by adding a MODULE structure to your
application’s MAP. To call an external .LIB procedure from “hand
coded” source:

1. Add a MODULE structure to your application’s MAP.

The MODULE should reference the external library file. In the
Application Generator, you can place this in the Inside the Global
Map embed point. See the Language Reference.

2. Add the function or procedure prototypes:

MAP
MODULE(‘EXTERNAL.LIB’)
ExtProc(*CSTRING),RAW !procedure prototype
ExtFunc(USHORT, *BYTE[]),USHORT !function prototype

END
END

Each prototype specifies the name of the procedure or function, the
data types of any parameters (in parentheses), and the return data
type (if a function). See the Language Reference.

In the example above, the procedure (here named ExtProc) expects
the address (without the length, hence the RAW attribute) of a
CSTRING to be passed to it as a parameter.

CHAPTER 15 USING THE PROJECT SYSTEM

The function (here named ExtFunc) expects the value of a USHORT
variable, the address of an array of BYTEs, and will return a
USHORT.

3. To specify a different calling convention, add it to the prototype.

You may use .LIB or .OBJ files created by other compilers.

Modifying the above examples, the first line below identifies the
procedure as expecting the C calling convention. The second line
identifies the function as expecting the PASCAL calling convention,
which is the Windows standard calling convention:
ExtProc(*CSTRING),C,RAW
ExtFunc(USHORT, *BYTE[]),USHORT,PASCAL

4. To optionally specify a third party linker’s identifier, add it to the
prototype.

Some compilers, most notably ‘C’ language compilers, add a
leading underscore to the name of procedures and functions at
compile time. The examples below add the NAME attribute:

ExtProc(*CSTRING),C,RAW, NAME(‘_ExtProc’)
ExtFunc(USHORT, *BYTE[]),USHORT,PASCAL,NAME(‘_ExtFunc’)

.DLL Files

Dynamic Link Libraries contain external procedures and functions which
are linked to your application only at runtime. To create dynamic link
libraries, just specify .DLL as the target file extension.

To call an external .DLL procedure follow the steps outlined for calling a
.LIB procedure, above.

SETTING PROJECT FILE OPTIONS

This section describes the individual components of the project file, and
shows you how to modify their properties.

Global Compile and Link Options

Select the first line of the Project Tree listing and press the Properties
button to open the Global Options dialog. This includes the following
options:

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Global Tab

Title To add a short text description, type it in the
Title field. The Project System will list the
description next to the Project name in the
Project Tree list.

Target Type To specify the executable file type, choose .EXE,
.LIB , or .DLL from the Target Type drop list.

Target OS To specify the executable’s targeted operating
system, choose Windows 16 bit or Windows 32
bit from the Target OS drop list.

Note: You can compile and link 32-bit executables with Windows
3.1 if you have Win32S installed, but you must have Windows
95 or Windows NT to run them.

Memory Model Not implemented in this release, accept the
default.

Run-Time Library To specify how the runtime library is called by
the target file, choose Standalone , Local , or
External from the Run-Time Library drop list.

Standalone Creates the target file so it calls
the runtime libraries as
CWRUNxx.DLL.

Local Creates the target file with the
runtime library linked internally
(a "one-piece" executable).

CHAPTER 15 USING THE PROJECT SYSTEM

External Links the application so it calls
the runtime library from a .DLL
which you have created with the
runtime library linked internally
and exported.

Build Release System
To create an executable for release, check the
Build Release System box. To create an
executable for use with the Debugger, uncheck
the Build Release System box.

Debug Tab

Debug Mode To specify the level of debug capability, choose
Off , Min , or Full from the Mode drop list.

Line Numbers To specify line numbers be built into the object
file, check the Line Numbers box. This is not
necessary for the Clarion debugger, but may be
helpful when using other debuggers.

Stack Overflow To enable stack overflow warnings at runtime,
check the Stack Overflow box.

NIL-Pointer To allow compiler warnings when dereferencing
null pointers, check the NIL-Pointer box.

Array Index To enable array index larger than the array size
warnings at runtime, check the Array Index
box.

Setting global debug
options.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Optimize Tab

CPU To specify optimization by microprocessor type,
choose from 286, 386, 486, or Pentium .

Optimize for Speed
To favor program speed over creating a smaller
executable file, check the Optimize for Speed
box.

Defines Tab

Defines To define a switch, or switches for use with the
COMPILE and OMIT compiler directives, type
a list of valid Clarion labels separated by
commas. Each label defines a separate switch.

Setting global
optimizer options.

CHAPTER 15 USING THE PROJECT SYSTEM

Defines refers to the Project System language
statement #PRAGMA DEFINE(). The
#PRAGMA DEFINE() statement creates a
switch that can be toggled on and off. The
switch can then be referenced by the COMPILE
and OMIT compiler directives. See the
Language Reference for more information on
COMPILE and OMIT.

For example, type ‘Demo’ in the Defines field.
The Project System will create a switch called
Demo and turn it “on.” Now you can use the
switch in conditional COMPILE and OMIT
statements within your source code. For
example:

COMPILE(‘END COMPILE’,DEMO=ON)
IF TODAY() > FirstRunDate + 30
#ReturnCode = MESSAGE(‘Beta period

expired’)
RETURN

END
END COMPILE

Link Tab

Create Map File To create a map file, which contains information
about segment sizes and public functions, check
the Create Map File box. The map file may be
used with third party debuggers.

Pack Segments To pack the data and program segments in the
.EXE file, check the Pack Segments box.

Stack Size To specify the stack size, type a number and unit
of measure in the Stack Size field.

Setting global link
optoins.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Individual Source Module Compile Options

You may set compile options for individual source modules as well as
for the project as a whole. Individual compile settings take precedence
over global compile settings. By setting the compile options for
individual source modules, you may specify full debug information for
one module and none for another.

Highlight a source code file in the Project Tree dialog, then press the
Properties button. The Compile Options dialog appears, showing most
of the same controls as the Global Options dialog. This dialog sets
compile options for the individual source module highlighted.

See Debug Tab, Optimize Tab, and Defines Tab above for information on
using this dialog.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

1616

UUUUUSINGSINGSINGSINGSING THETHETHETHETHE D D D D DEBUGGEREBUGGEREBUGGEREBUGGEREBUGGER
Debugging a program usually requires
running the program and repeatedly
stopping it to examine the value of
different variables. The Clarion
Debugger provides all the tools
necessary for tracking down your
application’s bugs.

Start the Debugger from
within the Development
Environment, or from
Windows. See your source
code in one of the
Debugger windows as it
executes.

Once you suspect the
cause of the bug, set a
breakpoint. You can then
execute the program, and
automatically stop it at that
point to examine and
change variable values.

Customize the Debugger to
fit your work environment.

Set breakpoints on simple
or complex expressions.

CHAPTER 16 USING THE DEBUGGER

Clarion ships two debuggers: a 16-bit debugger for 16-bit applications,
and a 32-bit debugger for 32-bit applications. Both are powerful tools for
finding and diagnosing errors in your applications. You can examine
source code and data as your program executes, and exercise complete
control over your program’s execution.

This chapter will:

◆ Tell you how to prepare your projects for debugging.

◆ Tell you how to start the debugger.

◆ Tell you how to customize the debugger’s operation to your work
environment.

◆ Tell you how to monitor your program’s execution and check its
state at specific points by setting break points and watch expressions.

OVERVIEW: THE DEBUGGING PROCESS

The debuggers are very flexible, quite complex, and there are many
windows, options, and features available. This overview of the
debugging process suggests a general sequence of steps that introduces
you to the most important features of the debuggers with the least
amount of confusion. Keep this sequence in mind as you explore the
debuggers.

1. Shut down other applications, then start the debugger.

This offers two benefits. First, more system resources are available
to your application and the debugger. Second, you won’t lose data
from other active applications if a system crash occurs during the
debugging process.

2. Load only the source files you need to debug.

Each source file you select becomes a child window in the debugger.
The fewer source files you select, the less clutter you have on your
debugger screen, and the less overhead the debugger must manage.

3. Set Debug Options.

Take a few minutes to read about the Setup Options. Options such as
Clarion Soft Mode, Autotile, Clean Desktop, debugger on Top,
Global Find Text, and others can make the (16-bit) debugger easier
to read and work with.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Tip: Clarion Soft Mode is recommended for most 16-bit projects.
However, under Windows 95, you must use Hard Mode. In Hard
Mode, all other system activity is suspended while the
debugger is active. This means the desktop is not redrawn,
which can be confusing if you are not expecting it.

4. Set a break point.

5. Run your application (the debuggee) with Go or Step commands.

6. Select and arrange the debugger windows.

Many of the debugger windows will be empty until your application
stops at a break point. Once your application stops, and the windows
are populated, they will be more meaningful and easier to understand
and work with. Iconize or close the windows you don’t need to see.

7. Set break points, set watch expressions, and change variable values.

8. Run your application with Go or Step commands.

9. Repeat steps 7 and 8 as needed.

10. Exit your application (debuggee).

It is very important that you exit the debuggee program before you
exit the debugger. Exiting the debugger while the debuggee is still
active can cause system crashes.

11. Exit the debugger.

PREPARING YOUR PROJECTS FOR DEBUGGING

The Project System allows you to set the debug options for all the
programs in your application in the Global Options dialog. To make
your executable (.EXE or .DLL) suitable for debugging:

1. Create your project file, and make it the current project (the Using
the Project System chapter explains how).

2. Choose Project ➤ Edit to view the Project Editor dialog.

3. Select the top level of the tree, which holds the name of the project,
and press the Properties button.

4. When the Global Options dialog appears, select the Debug tab,
then choose Full from the Debug Mode drop list.

5. Optionally check the Line Numbers box.

CHAPTER 16 USING THE DEBUGGER

Line numbers are automatically available to the Clarion debugger,
however, if you are using another debugger, checking this box will
make line numbers available to it.

6. Press the OK button to close the Global Options dialog, then the
Project Editor dialog.

7. Press the Make button on the toolbar to compile and link the
application.

The application now includes the information the debugger needs.

You can also turn on debugging information for a single module in the
project. This reduces the overhead for the debugger. To do so, follow the
steps above for Global Options , except choose None from the Debug
Mode drop list. Then follow the steps below:

1. Choose Project ➤ Edit to view the Project Editor dialog.

2. Select only the source module you need to debug, and press the
Properties button.

3. When the Compile Options dialog appears, choose Full from the
Debug Mode drop list.

4. Press the OK button to close the Project Editor dialog and the
Compile Options dialog.

5. Press the Make button on the toolbar to compile and link the
application.

This includes debug information for that module only.

THE 16-BIT DEBUGGER

Starting the Debugger

The 16-bit debugger runs as a separate application, but you can start it
either from the development environment, or directly from Windows.
Starting from Windows, with the development environment unloaded,
means more system resources will be available for your application and
the debugger.

❏ To start the debugger from the development environment, either:

1. Choose Project ➤ Debug or press the Debug button on the toolbar.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

The development environment checks the project information to
determine if your application is 16-bit or 32-bit, and starts the
corresponding debugger.

or...

2. Compile and link your application by pressing the Make button,
then, with the compile results dialog still open, press the Debug
button.

❏ To start the debugger from the windows environment:

1. Switch to Program Manager (Windows 3.x), or press the Start button
on the taskbar (Windows 95) and open the Clarion program group.

2. DOUBLE-CLICK the Clarion Debugger 16-bit icon (Windows 3.x), or
choose Clarion Debugger 16-bit from the programs menu (Windows
95).

If you wish to start the debugger from another program launcher, the
application path name is C:\CW15\BIN\CLWDB.EXE.

3. With the debugger launched, choose File ➤ File to Debug , then
choose an .EXE file in the Open File dialog.

You can load the debugger, then debug a program which was already
running before you loaded the debugger. This is useful for situations
where the program under development unexpectedly “misbehaves,”
but hasn’t yet produced a fatal error.

Start the debugger as usual, and choose File ➤ File to Debug .
Choose the .EXE file for the running program from the Open File
dialog. The debugger will ask you to confirm that you wish to debug
a running program.

Two ways to start the
debugger.

CHAPTER 16 USING THE DEBUGGER

Tip: When debugging, run only the debugger and the debuggee
programs. By doing so, you won’t lose data in other
applications if a crash occurs during the debugging process.

Loading the Source Files

When you run the debugger, you must select the source code files to
debug. For this purpose, the Sources to include in session dialog
automatically appears when you start the debugger.

❏ To load the source files when the debugger appears:

1. Select the source code files in the Sources to include in session
dialog by CLICKING on them.

The debugger stores the files you select between debug sessions.

2. Press the Select All button to include all project source files.

3. Press the Expand/Contract button for a list of only those source
files selected.

4. Press the OK button.

The debugger windows appear.

If the application does not include debug information, the debugger skips
this step and opens a disassembly window (explained below).

The Debugger pr ompts
you to select the source

code files for the project.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Setting Debugger Options

Because of its broad range of flexibility, the debugger is quite complex,
so setting some basic options prior to using the debugger can pay off in
reduced learning curves. In particular, we recommend enabling Clarion
Soft Mode for most projects developed under Windows 3.1.

The debugger Options menu provides several toggles which can help
fine tune the way in which you debug your project.

Soft Mode Toggles hard and soft mode debugging.

In soft mode, when the program being debugged
is suspended in the debugger, part of the
debugger will attempt to simulate the behavior
of the program being analyzed (debugee).

In hard mode, when the program being
debugged is suspended in the debugger, the only
window to operate is the debugger. All other
activity is suspended. One consequence of this is
that the desktop is not redrawn. Another is that
other active applications will be inaccessible
until the debugger returns control to the
debuggee.

Tip: When working in Hard mode, type D to bring the Debugger to
the top.

Clarion Soft Mode The debugger will use part of the runtime library
to simulate the behavior of the program being
debugged. This is the recommended mode for
most projects.

Extended Stack Trace Debugger shows information about
procedures when no debug information is
available. A disassembly window opens,
containing the relevant segment.

Disassembly On The Disassembly Window “shadows” the active
source window. When you select a line of
source, the cursor in the Disassembly Window
moves to the line corresponding to it.

CHAPTER 16 USING THE DEBUGGER

This menu is a toggle option. If the Disassembly
Window is closed when you turn on the option,
you can open it by DOUBLE-CLICKING on a source
line, then pressing Cancel in the Break Point
dialog.

Assembly Single Step Toggles step mode for assembler break
points. When execution reaches an assembler
break point, step mode is set on. When
execution reaches a source break point, it turns
off.

Control Panel Displays a toolbox window with buttons
corresponding to the four Go! commands. The
next time the program being debugged is
suspended, the control panel receives focus.

Tip: When debugging in hard mode, when you activate the main
Debugger window, you cannot access the control panel.

Setup Opens the Setup dialog. See below.

Debugger Setup Options

Access the debugger Setup dialog using the Options ➤ Setup
command. The dialog provides the following options.

Ignore Dll’s Instructs the debugger to ignore debug
information in .DLL files. This reduces the start-
up time for the debugger.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Disable Kernel messages
If you are running the Debug version of
Windows (available in the Microsoft Windows
3.1 SDK), the debugger will automatically trap
error messages posted by the kernel (one of the
three main dynamic link libraries utilized by
Windows). You can locate such errors with the
Find Last Error command.

If you are not using the AUX device to report
messages, add the line OutputTo=NUL in the
[DEBUG] section of your SYSTEM.INI file.

Report Missing Source Files
The debugger automatically prompts for source
code files it cannot locate.

Iconize debugger when inactive
Automatically iconizes the debugger when the
program being debugged is active.

Bring debugger to the top on hard mode break
The debugger appears on top of any other open
windows when active; relevant for hard mode
debugging only.

Tip: When working in Hard mode, type D to bring the Debugger to
the top.

Disassembly opcodes only (in disassembly window)
The disassembly window contains only
opcodes, eliminating the space taken up by
binary codes.

Smart single stepping When enabled, single stepping on a line with a
procedure call will load the debug information
for the target procedure, if available. This option
extends to .DLL’s with debug information.

No horizontal scrollbars
Hides the horizontal debugger scroll bars.

Global Find Text When disabled, each source window
“remembers” its own search text string. When
enabled, the default search text will be the same
as the last search, regardless of the window.

CHAPTER 16 USING THE DEBUGGER

Order record fields by address
When enabled, it orders the RECORD variables
by memory address.

Auto Tile Tiles the open debugger windows.

Clear Desktop When enabled, it minimizes all other running
applications (other than the debuggee) when the
debugger activates.

Max # of source windows open
Specifies the maximum number of source
windows the debugger will open at one time.

Max # of disassembly windows open
Specifies the maximum number of disassembly
windows the debugger will open at one time.

Additional Debugger Options

In addition to the normal debugging window and setup options, you can
activate special modes and options from these menu commands:

Redirection To use a redirection file other than CW15.RED
with the debugger, choose File ➤ Load
Redirection . The Redirection file helps the
debugger locate files such as *.DBD, and
*.CLW. See the Using the Project System
chapter, Editing the Redirection File.

Active DLL’s To add a related dynamic link library (*.DLL) to
the debug session, choose File ➤ Debug Active
DLL . Choose a file from the Active Module
dialog. This option is available for hard mode
debugging only.

Sleep To set the debugger into sleep mode, in which it
waits for a general protection fault (GPF),
CTRL+ALT+SYSRQ, or an INTERRUPT(INT3),
choose File ➤ Sleeper Mode . This option is
available for hard mode debugging only.

You can start the debugger in sleep mode from a
DOS command line by adding /s to the
command line.

Tip: If the program being debugged goes into an infinite loop,
CTRL+ALT+SYSRQ will break it.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Restart To start a debug session with the watch
expressions and break points from a previously
terminated session, choose File ➤ Restart . This
option is available, provided the source code has
not changed.

Position To size the debuggee’s window to the maximum
desktop area not taken up by the debugger,
choose Window ➤ Position Debuggee . This
has no effect when the debugger is maximized.

Message Groups To set up your own custom message groups to
watch, choose Options ➤ Custom Groups .
Type a name for the group, and choose the
Windows messages from the list box in the
Selective Break Point Groups dialog.

Colors To customize the debugger selection colors,
choose Options ➤ Custom Colors . Select the
colors for the Current Line , General Cursor ,
Inactive Code and Break Points in the Color
dialog.

The Debugger Windows

The debugger consists of a collection of child windows, which track
different information about the program for you. These windows are:

◆ The source code window

◆ The Watch Expressions window

◆ The Global Variables window

◆ The Active Procedures window

◆ The Disassembly window

◆ The Machine Registers window

◆ The Library States window

CHAPTER 16 USING THE DEBUGGER

◆ The Windows Messages window

After you start the debugger, take a moment to arrange the various
windows in a format that is comfortable for you. Position the most
important windows where you can quickly scan for the information you
need. Close or iconize unneeded windows.

Default Windows

At first, the debugger opens four windows:

◆ The source code windows display
the source code documents. The title
bar shows the source module name.
By default, the next line to execute is
green. Lines manually elected by you
are light cyan.

Tip: If the Debugger opens without listing any source code
documents in the Sources to include in this session dialog,
the most probable cause is that none of the source code files
listed in the Project Tree contained debug information. Check
for .DBD files, in C:\CW15\OBJ.

◆ The Watch Expressions window
shows the current value of variables
and expressions. Set a watch
expression to see how a variable or
expression changes as your program
executes.

The title bar is Watch Expressions . See the Editing Watch
Expressions section (below) to learn the syntax for watch
expressions. To add a variable to the watch list:

1. DOUBLE-CLICK on an empty line in the Watch Expressions window.

2. When the Watch Expression dialog appears, type a variable name
(as it appears in the global variables list) and press OK.

3. Alternatively, press the Browse button, select a variable from the
list, then press OK twice.

The expression or variable appears in the Watch Expressions
window, and its current contents appear next to it.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

You can also add a variable to the Watch Expressions window by
DOUBLE-CLICKING on a variable in either the Global Variables window
or the Active Procedures window.

You can edit a variable in the Watch Expressions window by
DOUBLE-CLICKING on it, and typing an expression in the Watch
Expression dialog. See the Editing Watch Expressions section,
below.

Tip: To quickly add a structured variable (such as a record, string
or array) to the watch list, DOUBLE-CLICK on it in the Global
Variables or Active Procedures windows, then press the Copy
Variable to Watch button.

◆ The Global Variables window shows
you the current value of each
component of each global variable.
For example, a string variable of eight
characters, appears on eight separate
lines showing the contents of each
position of the string.

The Global Variables window contains tree controls, so that you can
expand only the variables you want to examine. Controls containing
a (+) are expandable by CLICKING on them. Controls containing a (-
) are contractible by CLICKING on them.

The top level is the source code module which contains the variable.
The next level is the variable name.

◆ The Active Procedures window lists
the procedure currently executing,
which allows you to monitor nested
procedure calls. The window appears
in tree format. The upper levels
represent the names of procedures and
the lower levels represent the
variables.

DOUBLE-CLICKING on an active procedure displays its source or
disassembly. DOUBLE-CLICKING on a variable copies it to the Watch
Expressions window.

The Active Procedures window displays information for the
current thread only.

Other Windows

Other debug windows provide other types of information:

CHAPTER 16 USING THE DEBUGGER

◆ The Disassembly window is optional
for a project with debug information:
choose Options ➤ Disassembly On
to display it.

If you run the debugger on a program
with no debug information, the
Disassembly window automatically
displays the assembly language
instructions. The current instruction is
selected.

DOUBLE-CLICKING (or pressing ENTER) on a line in the Disassembly
window which contains a jump or call instruction moves the cursor
to the target location. ESC returns the cursor to the original location.

INS inserts an unconditional break point at the cursor. DEL removes
one. Pressing the SPACE BAR displays the Break Point dialog.

◆ The Machine Registers window
shows the current register values;
choose Window ➤ Registers to
display it.

The Machine Registers window
shows the register in the left column,
and its value to the right.

◆ The Library States window displays
return values for Clarion library
functions; choose Window ➤ Library
State to display it. These functions
represent all the field and other events.

Functions include ACCEPTED,
SELECTED, FIELD, FOCUS,
FIRSTFIELD, LASTFIELD,
ERRORCODE, AND ERRORFILE.

The names listed in EQUATES.CLW and KEYCODES.CLW appear
next to the return values.

◆ The Windows Messages window
displays up to 200 of the most recent
message events generated by or
directed to your application; choose
Window ➤ Messages to display it.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

The debugger adds a separator line (“-----”) to indicate a break point
occurred.

Every action the user takes—from mouse movement to menu
commands—is first processed by Windows. If Windows determines
the action is for your application, it passes the information to your
application via a message. For example, if the user types the letter
“A,” it sends a WM_KEYDOWN message to your application, with
the key code for “A” as the first message parameter.

Tip: If you include DDE services in your application, we
recommend testing your application with another DDE
application and monitoring the DDE messages. For further
information, see the Microsoft Windows 3.1 Programmers
Reference, Volume 3, available from Microsoft Press.

Setting Break Points

Normally, when debugging an application, you’ll identify a small part of
the program which produces incorrect output, or crashes. The Debugging
process for this situation will probably require running just that part of
the program, and stopping it at one or more points to check its status.

Break points allow you to automatically halt execution at the line of code
at which (or near which) you think the problem occurs. Your program
runs up to the break point, then halts and turns control back to the
debugger. You can then check the contents of variables and expressions
to identify the cause of the problem.

You can also set conditions on the break point, telling the program to
continue executing if the condition is false, or turning control over to the
debugger if true.

When you set a break point, the source code line where the break point
occurs appears in magenta in the source window.

Unconditional Break Points

An unconditional or “sticky” break point is placed on a source code line,
and stops execution whenever the program encounters that statement:

CHAPTER 16 USING THE DEBUGGER

1. Open the source code or disassembly window.

2. Locate the line of code to break on and DOUBLE-CLICK on it.

The Break Point dialog appears.

3. Select Always and press the OK button.

When you execute the Go! command, the program will run until it
reaches the break point, then stop.

Tip: When a source code or disassembly window is the active
window, press INSERT to add an unconditional break point, or
DELETE to remove one.

Conditional Break Points

To narrow the search for bugs, you can tell the debugger to break only
when a certain condition exists. The condition takes the form of an
expression which can include program variables, operators and
constants. You can also tell the debugger to break when it detects a
particular message or messages from Windows to the application.

❏ To set a conditional break point on a change in a watch expression’s
value:

1. Establish a watch expression as described in the Editing Watch
Expressions section, below.

2. Locate the line of code to break on and DOUBLE-CLICK on it.

Setting a break point.
The debugger will
always stop at this
break point.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

3. When the Break Point dialog appears, select Watch Expression #0 .

4. Type the number of the watch expression (from the watch
expressions window) in the Watch#0 field.

5. Press the OK button.

When you execute the Go! command, the program runs until it
reaches the break point, evaluates the watch expression, then stops if
the expression is true, i.e., evaluates to a non-zero value.

For example, if variable X should have a maximum value of 999, but
increments to 1000 anyway, causing havoc, you can tell the debugger
to break at 999, then step through the program to see when and how
it reaches 1000.

❏ To set a break point conditional on a specific Windows message:

1. Locate a line of code to break on and DOUBLE-CLICK on it.

2. When the Break Point dialog appears, select Windows Message .

3. Select a Windows message from the Windows Message combo
box.

4. Press the OK button.

For example, you could place a break point in a loop which checks
for a WM_RBUTTONDOWN message, which is the message
Windows sends when the user clicks the right mouse button in your
window. When you run the program, you RIGHT-CLICK inside it, and
Windows sends a WM_RBUTTONDOWN message to your
application. The break point condition would be true.

❏ To set a break point conditional (or not) on receipt of one of several
Windows messages:

1. Locate the line of code to break on and DOUBLE-CLICK on it.

2. When the Break Point dialog appears, select Message Group ; or
Message Not in Group .

Setting a
breakpoint upon
receipt of any KEY
related message
from Windows.

CHAPTER 16 USING THE DEBUGGER

3. Select a message group from the list. This can indicate a category of
messages, such as mouse or key messages. You can also set up a
custom message group (by pressing the Custom Groups button) to
remember several specific messages, so that the break point will
occur only on one of these messages.

4. Press the OK button.

For example, you could place a break point in a loop which checks
for a Key message. When you run the program, when you press a
key, Windows sends a message to your application, and the break
point condition would be true.

❏ To set a break point which breaks when you receive an unexpected
message, that is, one that doesn’t belong to a group you specify:

1. Locate the line of code at which you want to establish the break
point and DOUBLE-CLICK it.

2. When the Breakpoint dialog appears, select Message not in
Group .

3. Select a message group from the combo box. The breakpoint occurs
only when the application receives a message not in this group.

4. Press the OK button.

Running the Program

The Go! , GoCursor! , Step! , and ProcStep! commands execute your
application while the debugger monitors it in the background. They
allow you to test your application in a controlled environment which
helps you identify bugs faster.

Tip: These commands are all top level menu commands. No pull
down menus appear below them; just place the cursor on the
menu command and click, or press ALT plus the underlined
letter to execute.

Go! To run the program from its current state to the
next breakpoint, choose Go!

When a source or disassembly window is active,
the G key executes the command.

GoCursor! To run the program from its current state to the
selected source or assembler line in the source
code or disassembly window, choose
GoCursor!

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

When a source or disassembly window is active,
the C key executes the command.

Step! To advance the program from the currently
selected source or assembler line, one line of
code at a time, choose Step!

When a source or disassembly window is active,
the S key executes the command.

ProcStep! To advance the program from the currently
selected source or assembler line to the next, but
to execute through procedure calls without
stopping, choose ProcStep!

When a source or disassembly window is active,
the P key executes the command.

Working with Source Code

When the source code window is active, you can navigate through the
source code document with the Edit menu.

Tip: DOUBLE-CLICKING on a source code line containing a call to a
procedure takes you to the first line of that procedure. esc
returns you.

The following commands are available:

Find Text Locate the line which contains the text you type
into the Find Text dialog.

Find Next Locates the next line which contains text you
previously searched for with the Find Text
command.

Find Procedure Locates the first source code line for the
procedure you pick from the Find Procedure
dialog. The application’s procedures appear in a
combo box inside the dialog.

Goto Line Advances the cursor to the line number you
specify.

Current Line Advances the cursor to the source code line
which contains the next statement to execute.

CHAPTER 16 USING THE DEBUGGER

Find Last Error Places the cursor on the last error.

This command will even work after most
General Protection Fault errors. The cursor will
appear at the source code line where the error
took place, or at the line calling the function
causing the problem.

Break Points Displays the Breakpoints dialog, which lists
the breakpoints you’ve set for this debug
session. The breakpoints appear in the format
Source Module: Procedure: Line Number. Select
a breakpoint from the list, then press one of the
following buttons: Locate , Delete , Edit , OK, or
Help.

Locate Scrolls the source window to the line containing
the breakpoint.

Delete Removes the breakpoint.

Edit Calls the Breakpoint dialog, See Setting
Breakpoints above.

Editing Watch Expressions

The debugger contains an expression editor dialog, which allows you to
edit a watch expression. Sometimes you want to take an action
depending on the value of an expression that uses variables from your
program. For example, you may want to stop the application and look at
a variable if it’s a negative value, or continue on to the next break point if
it’s positive.

To edit a watch expression, select a line in the Watch Expressions
dialog and choose Edit ➤ Edit . The Watch Expression dialog appears.

The Breakpoints list.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Type an expression in the Expression to Evaluate field, then press the
OK button. When the debugger runs the program, it will test the
expression upon reaching the breakpoint, and halt if the expression
evaluates true.

The Edit Expression dialog also contains a Browse button, to help
create your expression quickly and accurately. Press the Browse button
to see a list of the variables local to the procedure you’re currently
debugging.

The Make Abs button automatically prefixes variable names with their
memory addresses, module names, and procedure names.

The Duplicate button creates a duplicate watch expression that appears
in the Watch Expressions dialog.

You can prefix the variable name with a procedure name and/or a module
name. This allows you to name a variable not currently in scope, for
example, a variable in another procedure that would not be visible for the
current procedure.

❏ To specify a procedure and variable, prefix the variable with the
procedure name plus a period (“.”).

For example, “RoyalFlush.King” refers to a variable called King in
the procedure called RoyalFlush.

❏ To specify a module and global variable, prefix the variable with the
module name plus a period (“.”).

For example, “NewDeal.Shuffled” refers to a global variable called
Shuffled in the module called NewDeal.

❏ To specify a local variable in a procedure in another module,
combine the prefixes.

For example, “Poker.RoyalFlush:King” refers to the variable called
King in the procedure called RoyalFlush in the module called Poker.

❏ You may specify register names (for example, ax) in a watch
expression.

❏ You may use the unary operator (@) to denote the address of a
memory object.

CHAPTER 16 USING THE DEBUGGER

Tip: The Debugger will guess the right prefix if the variable is
unique.

The following list presents the operators and expression syntax for the
Edit Expression dialog. The operators are language independent,
derived from Clarion, C/C++, and Modula 2/Pascal operators.

Key Function

+ add
- subtract
* multiply
/ or DIV divide
% or MOD modulus (remainder)
| bitwise OR
& bitwise AND
< less than
<= less than or equal to
> greater than
>= greater than or equal to
= equal
!= or <> not equal
! or NOT logical NOT
& or AND logical AND
| or OR logical OR
* indirection (when prefix)
^ indirection (when post-fix)
-> point at member
. select member (record field)
::={e,d} display expression e as if it was the same type d

Editing Variables at Run Time

Using the debugger, you can change the value contained in a memory
variable while the program is suspended. You can then resume the
program to test execution with the variable containing the new value.

To change the contents of the variable:

1. Select the variable in either the Global Variables or the Active
Procedures windows.

2. Press F2, or choose Edit ➤ Edit .

The Edit Variable dialog appears.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

3. Type a new value for the variable and press the OK button.

When you choose Go! , GoCursor! , Step! , or ProcStep! , the
program resumes execution with the memory variable changed to the
new value.

THE 32-BIT DEBUGGER

Starting the Debugger

The 32-bit debugger runs as a separate application, but you can start it
either from the development environment, or directly from Windows.
Starting from Windows, with the development environment unloaded,
means more system resources will be available for your application and
the debugger. The 32-bit debugger can debug multiple programs at the
same time.

❏ To start the debugger from the development environment, either:

1. Choose Project ➤ Debug or press the Debug button on the toolbar.

The development environment checks the project information to
determine if your application is 16-bit or 32-bit, and starts the
corresponding debugger.

or...

2. Compile and link your application by pressing the Make button,
then, with the compile results dialog still open, press the Debug
button.

CHAPTER 16 USING THE DEBUGGER

❏ To start the debugger from the windows environment:

1. Switch to Program Manager (Windows 3.x), or press the Start button
on the taskbar (Windows 95) and open the Clarion program group.

2. DOUBLE-CLICK the Clarion Debugger 16-bit icon (Windows 3.x), or
choose Clarion Debugger 32-bit from the programs menu (Windows
95).

If you wish to start the debugger from another program launcher the
application path name is C:\CW15\BIN\CWDB32.EXE.

3. With the debugger launched, choose File ➤ File to Debug , then
choose an .EXE file in the Open File dialog.

Tip: When debugging, run only the debugger and the debuggee
programs. By doing so, you won’t lose data in other
applications if a crash occurs during the debugging process.

Loading the Source Files

The source associated with the debuggee program is automatically
loaded and is available for your examination. However, you may specify
any additional source files you want the debugger to display,

❏ To specify additional source files:

1. Choose Window ➤ Source.

The Select Source dialog appears.

2. Highlight a source file and press the OK button.

Two ways to start the
debugger.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Repeat for each source file you want to debug.

Setting Debugger Options

The debugger Options menu provides two choices: Setup and Install
as System Debugger . Use Setup to customize the debugger.

Setup

Choose the Options ➤ Setup command to access the following options:

Redirection File The debugger uses the redirection file to find
project components. A redirection file is
optional and follows the same conventions as
the Project redirection file. See the Using the
Project System chapter, Editing the Redirection
File.

Clarion Runtime Dll
Specifies the Clarion dynamic link library
(DLL) linked into the .EXE being debugged.

Stop At Program Entrypoint
Tells the debugger to stop the debuggee program
at its entrypoint upon initial program load.
Initial program load (and start) occurs when you
choose File ➤ File to Debug and select the
.EXE file from the Open File dialog.

Checking this option allows you to survey the
status of your program at the earliest possible
point of execution, without explicitly setting a
breakpoint.

CHAPTER 16 USING THE DEBUGGER

Stop At First Source Line
Tells the debugger to stop the debuggee program
at its first line of executable code upon initial
program load. Initial program load (and start)
occurs when you choose File ➤ File to Debug
and select the .EXE file from the Open File
dialog.

Give Debugger Focus When Debuggee Suspended
When the debuggee is suspended at a
breakpoint, focus immediately returns to the
debugger.

Open Procedure Window on Startup
Tells the debugger to open the Procedures In
window on debugger startup. See The Debugger
Windows below.

Stop on dynamic DLL load
Tells the debugger to suspend debuggee
execution when a dynamic DLL load (demand
load) is detected. This gives you the opportunity
to examine the newly loaded code and set
breakpoints before anything else happens.

Install as System Debugger

Installs the 32-bit debugger as the system debugger. In this
configuration, the debugger is automatically invoked whenever a
program crashes.

The Debugger Windows

The debugger consists of a collection of child windows which track
different information about the debuggee program for you. These
windows are:

◆ The Procedures In window

◆ The Globals window

◆ The Stack Trace window

◆ The source window

◆ The disassembly window

◆ The memory window

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

After you start the debugger, take a moment to arrange the various
windows in a format that is comfortable for you. Position the most
important windows where you can quickly scan for the information you
need. Iconize or close unneeded windows. Use the Window menu to
open windows of special interest.

At first, the debugger opens three windows: the Procedures in window,
the Globals window, and the Stack Trace window. A fourth window, the
source window, is opened as soon as you click on a procedure in the
Procedures in window.

The Procedures In window

Lists the procedures in the debuggee and their associated source modules.
CLICK on a procedure name to display its associated source or assembler
code.

Tip: Use the Procedures In window to navigate through your
source code.

The Globals window

Displays the current value of each component of each global variable, as
well as the library state. RIGHT-CLICK on a variable to change its value.

The Globals window contains expandable tree controls, so that you can
hide variables you don’t want to see. Variables with a (+) button are
expandable by CLICKING on them. Variables with a (-) button are contractible
by CLICKING on them.

Tip: RIGHT-CLICK on a variable to change its value.

CHAPTER 16 USING THE DEBUGGER

The Stack Trace window

Shows the current register values and local variable values. The variable
name is on the left and its value in decimal format then in hexadecimal
format is on the right. This information is for the current thread only.

The Stack Trace window contains expandable tree controls, so that you
can hide variables you don’t want to see. Variables with a (+) button are
expandable by CLICKING on them. Variables with a (-) button are contractible
by CLICKING on them.

Tip: The Stack Trace window has the following special
functionality:

RIGHT-CLICK on a variable to change its value.

RIGHT-CLICK on a call to locate its corresponding source line or
assembler line.

RIGHT-CLICK on a register to examine the memory pointed to by
the register.

The Source window

The Source Window
Taskbar.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Displays a source module. There may be multiple source windows open
showing different source modules. The title bar shows the module name.
The cursor is green. This cursor simply marks a line for your use. It may
or may not mark the program’s current position. Breakpoint lines are
red. If the current line is also a breakpoint line, it is yellow.

Use the source window’s task bar buttons to control the execution of
the debuggee and to set and remove breakpoints. The taskbar buttons
correspond to the options on the popup menu which can be accessed by
RIGHT-CLICKING anywhere in the window. See Running the Program
below for a description of each command.

Tip: RIGHT-CLICK anywhere in the window to access the popup menu.

The Disassembly window

Displays assembler code. There may be multiple disassembly windows
open. The title bar shows the .EXE name. The cursor is green. This
cursor simply marks a line for your use. It may or may not mark the
program’s current position. Breakpoint lines are red. If a line is both the
cursor and a breakpoint line, it is yellow.

Blue text has a corresponding source statement associated with it.
Moving the cursor to a line with blue text moves the cursor in the
source window to the corresponding source line.

Use the disassembly window’s task bar buttons to control the execution
of the debuggee, and to set and remove breakpoints. The taskbar buttons
correspond to the options on the popup menu which can be accessed by
RIGHT-CLICKING anywhere in the window. See Running the Program
below for a description of each command.

The disassembly window has two vertical scroll bars. The left bar scrolls
64K of code at a time, the right bar scrolls 1 display line at a time.

Tip: RIGHT-CLICK anywhere in the window to access the popup menu.

The Disassembly Window
Taskbar.

CHAPTER 16 USING THE DEBUGGER

The Memory window

Displays memory allocated to the debuggee. The title bar shows the .EXE
name. The memory window has two vertical scroll bars. The left bar scrolls
64K of memory at a time, the right bar scrolls 1 display line at a time.

Setting Breakpoints

Normally, when debugging an application, you’ll identify a small part of
the program which produces incorrect output, or crashes. The Debugging
process for this situation will probably require running just that part of
the program, and stopping it at one or more points to check its status.

Breakpoints allow you to automatically halt execution at the line of code
at which (or near which) you think the problem occurs. Your program
runs up to the breakpoint, then halts and turns control back to the
debugger. You can then check the contents of variables to identify the
cause of the problem, and step through from that point on.

When you set a breakpoint, the line where the breakpoint occurs appears
in red in the source and disassembly windows.

Tip: Breakpoints appear yellow when you first create them
because both the red breakpoint color and the green cursor
color are present.

To set a break point:

1. Navigate to the source or assembler code where you want the
debugger to break.

CLICK on a procedure name in the Procedures In window to jump to
that procedure. Or right-click in the source window to access the
Find command to find a text string.

2. Highlight the line of code to break on.

3. Press the breakpoint button.

The breakpoint button appears on the source and disassembly
window taskbars with a round red icon. The breakpoint button acts
as a toggle. Pressing it a second time removes the breakpoint.The Breakpoint button.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Running the Program

The taskbar buttons on the source windows and the disassembly
windows control execution of your program. Similar taskbars appear on
each source and disassembly window. It makes no difference which
taskbar you use. Program execution always continues from the point at
which it stopped.

Alternatively, you can use the popup menus available in each window.
The taskbar commands are duplicated on the respective popup menus of
the source and disassembly windows. RIGHT-CLICK anywhere in the
window to access the popup menu.

Go Advances the program from its current position
to the next breakpoint. If no breakpoints are
encountered, the program keeps running.

Step Assembler Advances the program from its current position,
one line of assembler code at a time.

Step Over Assembler
Advances the program from its current position
to the next assembler breakpoint, without
executing any statements in between.

Step Source Advances the program from its current position,
one line of source code at a time.

Step Over Source Advances the program from its current position
to the next source breakpoint, without executing
any statements in between.

Go Cursor Advances the program from its current position
to the cursor. This has the effect of making the
cursor a temporary, one-time-only breakpoint.

Locate Line/Offset Advances the cursor (not the program) to the
line number (or offset for assembler) you
specify.

Find Advances the cursor (not the program) to the
source string you specify (source window only).

Step Over Assembler

Step Assembler

Breakpoint

Go

Go To Cursor

Step Source

Step Over Source

Locate

CHAPTER 16 USING THE DEBUGGER

Find Again Advances the cursor (not the program) to the
source string specified for the previous Find
command (source window only).

Editing Variables at Run Time

Examining Variable Values

The best way to examine variable values at runtime is to look for them in
either the Globals window or the Stack Trace window. Global variables
are shown in the Globals window and local variables are shown in the
Stack Trace window in both decimal and hexadecimal format.

Both windows contain tree controls, so that you can expand only the
variables you want to examine. Controls containing a (+) are
expandable by CLICKING on them. Controls containing a (-) are
contractible by CLICKING on them.

The Stack Trace window also shows machine register values and locates
the memory area the register points to. RIGHT-CLICK the register, or
highlight it and press ENTER, to examine the correct memory location in
the memory window.

Changing Variable Values

RIGHT-CLICK on a variable, or highlight it and press ENTER, in either the
Globals window or the Stack Trace window to change its value.

Tip: RIGHT-CLICK on a variable to change its value.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

1717

UUUUUSINGSINGSINGSINGSING THETHETHETHETHE D D D D DAAAAATTTTTABASEABASEABASEABASEABASE M M M M MANAANAANAANAANAGERGERGERGERGER

Use the Database Manager to interactively
browse through your data files. You can

add, modify, or delete Records.

Format the list to display only those fields
you choose.

Use the File Conversion Utility to convert
existing dtat files to a new format. You can

also generate source code to produce an
executable to convert data files for your

end users.

Use Query-by-Example (QBE) to find
records that meet specific criteria.

CHAPTER 17 USING THE DATABASE MANAGER

THE DATABASE MANAGER—AN OVERVIEW

The Database Manager is tool is provided to allow you direct access to
data files without the need of creating an application. With the database
Manager you can :

◆ Interactively browse through your data files.

◆ Add, delete, or change records.

◆ Add, delete, or change memos.

◆ Examine data files

◆ Print data

◆ Sort data

◆ Use Query-by-Example to Filter data

◆ Search data

◆ Convert data files

Database Manager was designed to allow application developers free
access to their data files. The only entry constraint is the picture assigned
to a column. The controls for Data Integrity and Referential Integrity in
your Data Dictionary and Application are not used.

Normally, Data Integrity is ensured in the end-user applications by the
Validity Checks specified in the Database Dictionary, allowing the user
to input only valid values in the field to which it applies.

Referential Integrity is ensured in generated applications by the
Relationship Constraints you specify in the Database Dictionary.
Changing the values in fields which link records in two files, or deleting
a Parent record with existing Child records can compromise the
Referential Integrity of your Database. This is discussed further in Using
the Dictionary Editor.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

BROWSING DATA FILES

There are three ways to browse data files with the Database Manager.
◆ Through the Dictionary Editor’s File ➤ Browse FileLabel

menu command.

◆ By choosing File ➤ Open (or pressing the Open button on
the Pick List)

◆ By choosing File ➤ Browse Database... .

Which method you use to call the Database Manager affects its behavior.
If you open a file through the Dictionary Editor (with the appropriate
.DCT file open) the Database Manager uses all the information in the
dictionary. If you open a file from any other area, only the information
stored in the file itself is available. This offers maximum flexibility—
allowing you to browse a file without a Data Dictionary file (.DCT). The
information stored in a file varies with different file systems.

From the Dictionary Editor

This is the best method to call the Database Manager because it provides
the most information about the file.

1. Open the appropriate dictionary file (.DCT).

2. In the Files list, highlight the desired file.

3. Choose File ➤ Browse <FileLabel>.

The <FileLabel> is the Clarion Label for the file as specified in the
dictionary. The File menu display this choice based on the
highlighted file.

If the file does not exist, a dialog appears asking if you want to
create it. With the Database Manager, you can create a file even if the
file does not have the CREATE attribute (the Enable File Creation
check box in the File Properties).

If the file exists but does not match the layout in the dictionary, a
dialog appears asking if you want to convert the file to the current
layout. See Converting Data Files for more information.

The file is displayed, and ready for any Database Manager operation.

From the Open File Dialog

To open an existing data file:

1. Choose File ➤ Open (or press the Open button on the Pick List).

CHAPTER 17 USING THE DATABASE MANAGER

The Open dialog appears.

2. Select the Database tab.

3. Highlight the file you want to open, and press the Open button.

A dialog appears prompting for the File Driver and file information.

4. Select the Database Driver from the drop down list.

5. Optionally, specify the Owner name and Options.

The Owner name is a password for access to the file. For an ODBC
database, this is the Data Source, user ID, and password separated by
commas.

The Options are additional instructions to pass to the database
driver (driver strings). See the Database Drivers appendix for more
information on valid driver strings for specific file systems.

 6. Press the OK button.

The file is displayed, and ready for any Database Manager operation.

From the Browse Database Menu Command

The Browse Database Menu command displays a specialized pick list
displaying recently opened data files or logical tables in database files
which contain multiple files (ODBC and TopSpeed).

1. Choose File ➤ Browse Database.

The Database Manager’s Pick List appears, displaying recently
opened files.

2. Highlight a file in the list and press Select or press the Open button
to choose one from a standard File Open dialog.

3. If you are opening a file for the first time, you are prompted to
supply the File Driver to use. Select the desired driver, then press the
OK button.

4. If you are browsing an ODBC Data Source or a TopSpeed database
with multiple tables in a single file, a dialog appears to allow you to
select the table to browse.

The file is displayed, and ready for any Database Manager operation.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

CLOSING A DATA FILE

Database Manager asks if you want to creates a backup copy before
modifying any data in a file. Creating a backup file allows you to cancel
changes you make while browsing a file. However, some file drivers do
not support the creation of a backup. When using one of those file
systems, you are not prompted for a backup.

Note: If you do not make a backup copy of the file when modifying
it, you will not be able to revert the file to its original state.

To close a file:

1. Choose File ➤ Close .

If you have modified the data, a dialog appears asking if you want to
save your changes.

Yes Saves your changes

No Reverts the data file to its last saved state

Cancel Returns you to the Database Manager.

CHANGING THE SORT ORDER

Once a file is open, you can change the sort order by specifying a
different key.

1. Choose Browse ➤ Order (or press CTRL+O).

The Select File Order dialog appears, listing the available Keys and
“Record Order”.

2. Highlight the key which matches the desired sort order (or Record
Order), then press the Select button.

The file is displayed in the selected sort order, and ready for any
Database Manager operation.

VIEWING FILE STATISTICS

The File Statistics command allows you to examine file information
including:

CHAPTER 17 USING THE DATABASE MANAGER

Filename The DOS file name and PATH for the data file

Driver The File System the file uses

Records The total number of records in the file
(including deleted records).

Record Length The size of each record.

Fields The number of fields in the file. Pressing the
ellipsis (...) button displays the field layout.

Keys The number of keys in the file. Pressing the
ellipsis (...) button displays the key components.

Memos The number of memos (and BLOBs) in the file.
Pressing the ellipsis (...) button displays the
memo field layout.

Indexes The number of indexes in the file. Pressing the
ellipsis (...) button displays the index
components.

Options Create, Reclaim, and Encrypt attributes.

To view File Statistics:

1. Choose File ➤ File Statistics .

The File Statistics dialog appears.

2. To view additional information about Fields, Keys, Memos, or
Indexes, press the ellipsis (...) button next to the appropriate control.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

WORKING WITH COLUMNS

Database Manager allows you to specify which columns (fields) you
wish to see on your screen, the size of those columns, and the order in
which columns are displayed.

Hiding columns

Hiding columns removes a column from view. This does not affect the
data file in any way. By hiding columns, you see only the desired data
columns.

1. Highlight the column to hide.

2. Choose Column ➤ Hide (or press CTRL+I).

The column is no longer displayed.

Showing Columns

Once columns are hidden, you can restore them to view or “unhide”
them.

1. Choose Column ➤ Show .

The Select Columns to Show dialog appears, with scrolling list of
the hidden columns.

2. Highlight the desired field and press the OK button, or press the All
button to show all fields.

The Show Fields dialog reappears, allowing you to select other
fields to restore to view. Repeat the last step for any other fields you
wish to show.

3. When you have all the desired fields displayed, press the Cancel
button.

Using Reformat

The Reformat command allows you to quickly define the desired view.
You can specify the fields to hide or show and set the order of the
columns all at once.

1. Choose Column ➤ Reformat .

The Reformat Fields dialog appears.

❏ To show all fields, press the Show All button.

CHAPTER 17 USING THE DATABASE MANAGER

❏ To hide all fields, press the Hide All button.

❏ To hide individual fields, highlight the desired field in the Shown
Fields list box, press the Hide button.

❏ To Show individual fields, highlight the desired field in the Hidden
Fields list box, press the Show button, The field reappears in its
original location.

SETTING COLUMN JUSTIFICATION

You can specify left, right, center, or decimal justification for individual
columns.

1. Choose Column ➤ Justify (or press CTRL+J).

22222. Select the desired justification type from the drop down list.

Left Places the beginning of the display value against
the left edge of the display field.

Right Places the end of the display value against the
right edge of the display field.

Center Centers the display value in the display field.

Decimal Aligns numeric data on the decimal point.

3. Press the OK button.

SETTING COLUMN WIDTH

You can adjust the column display width for individual fields.

To adjust the display width for a single field:

1. CLICK-AND-DRAG the grid line to the right of the column.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

CHANGING A COLUMN’S DISPLAY PICTURE

You can change any column’s display picture. This enables you to view
data in any supported format.

To change column’s display:

1. Highlight the desired column.

2. Choose Column ➤ Picture (or press CTRL+P).

3. Type the desired Picture Token in the Picture field.

The data is displayed in the specified format.

CHANGING THE COLUMN HEADER

Database Manager allows you to specify what displays as a column
header.

 To specify the column header:

1. Choose Column ➤ Header.

The Header sub-menu appears, displaying the valid options. A
check mark next to an option indicates it is enabled.

The available Header Options are:

Field Label Displays the field’s label from the Database
Dictionary.

Picture Displays the field’s display picture from the
Database Dictionary.

Type Displays the field’s data type from the Database
Dictionary.

Group Information Displays the field’s GROUP information from
the Database Dictionary.

Column Heading Displays the Default Column Heading from the
Database Dictionary.

Prompt Displays the default prompt from the Database
Dictionary.

CHAPTER 17 USING THE DATABASE MANAGER

WORKING WITH DATA FILES

This section describes how to use Database Manager to work with data
files.

Navigating Through a File

Database Manager uses the following keystroke conventions to navigate
through files:

◆ In Browse Mode, LEFT and RIGHT ARROWS move between columns. In
Edit mode, LEFT and RIGHT ARROWS move between characters.

◆ UP ARROW and DOWN ARROW, scroll bars, or VCR buttons move
between records

◆ CTRL+LEFT ARROW and CTRL+RIGHT ARROW swaps columns

◆ HOME and END cursor keys move to first and last columns,
respectively.

◆ PAGE UP and PAGE DOWN scroll up and down, respectively, between
record screens.

◆ CTRL+PAGE UP and CTRL+PAGE DOWN moves to the first or last record.

◆ INSERT allows you to add a record

◆ DELETE allows you to delete a record

◆ IN Browse Mode, ENTER allows you to edit the currently highlighted
field on the current record. IN Edit Mode, ENTER accepts your entry in
the current field.

Database Manager also provides VCR controls to navigate through files:

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Using the Locate Command

This command searches for the first record containing the value you
specify in the key field(s). This option is only available when the data
file is displayed in a keyed sequence, not in Record Number order. This
command only searches fields which are components of the selected key.
To search other fields, use the Search command.

1. Choose Edit ➤ Locate.

2. Type the desired value(s) in the Key field(s).

3. Press the OK Button.

The highlight bar is positioned on the first occurrence of the
specified value(s) in the key field(s). If the value entered does not
exist, the next highest match is highlighted

Search and Find Next

This command searches for the first record containing the value you
specify. The search may be limited to one field or all fields in the record.
You may search for:

◆ An exact match

◆ A record with a field beginning with the value specified

◆ A record with a field ending with the value specified

◆ A record with a field containing the value anywhere within it.

Bottom of List

Page Down

Entry DownLocate or Search

Top of List

Page Up

Entry Up

CHAPTER 17 USING THE DATABASE MANAGER

To begin a search:

1. Choose Edit ➤ Search (or press the ? VCR button).

2. Type the desired value in the Search For field.

3. Select the appropriate radio buttons for the desired type of search.

Valid options are:

Exact match Searches for values that match the specified
search string exactly

Starts With Searches for values that begin with the
specified search string

Contains Searches for values that contain the
specified search string

Ends With Searches for values that end with the
specified search string

4. If you want the search to match case, check the Case Sensitive box.

5. If you want the search to consider all fields, check the All Fields
box.

6. Press the OK Button.

When searching large files, the Search Status window appears to
report the search’s progress by displaying the number of records
searched and to provide the opportunity to abort the search. When
the search is complete, the highlight bar is positioned on the first
record found that matches the search criteria.

To cancel a search in progress:

1. Press the Cancel button on the Search Status dialog.

To continue a search:

1. Choose Edit ➤ Find Next (or press CTRL+N).

Database Manager searches forward from the current record. To
continue searching repeat the last step.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

USING QUERY-BY-EXAMPLE

Query-by-Example (QBE) is a powerful tool to find information in a
data file. This allows you to ask questions of your database based on
examples of the desired results. Query-by-Example filters records,
allowing you to display a subset of the records based upon a specified
example. The filter is in the form of an expression. Most often this
expression will compare a specific value to a field.

You specify your query in a QBE list box. A filter expression is built
based on expressions entered in this list box. Each column represents a
field, and each row represents logical groupings. Expressions entered in
different columns on the same row have the effect of an AND operator.
Expressions in separate rows have the effect of an OR operator. The filter
expression displays below the list box as you enter expressions in the list
box.

For example, to find all records with an ID number between 10 and 100,
with a last name of Smith or Smythe, you create a query:

IDNumber FirstName LastName

>10&<100 =’Smith’

>10&<100 =’Smythe’

Use the ampersand character (&) to represent the AND operator and the
vertical bar (|) to represent the OR operator when used in the same field.
The example above can also be represented in this fashion:

IDNumber FirstName LastName

>10&<100 =’Smith’ | =’Smythe’

Both examples produce a filter expression of (IDNumber > 10 OR
IDNumber < 100) AND (LastName = ‘Smith’ OR LastName =
‘Smythe’). The expression displays below the QBE list box.

Note: Although the expression created and displayed in a query is
not optimized, the runtime evaluator performs its own
optimization. Thus performance is not affected.

The Query is stored in the .INI file when you exit. The next time you
open the file in the Database manager, you can filter the records with the
same QBE filter.

CHAPTER 17 USING THE DATABASE MANAGER

EDITING DATA

One of Database Manager’s primary functions is the ability to update
records without creating procedures to do so. For example, you may
need to create a file of twenty choices which are unlikely to change. You
could use the Database manager to create the file, enter the twenty
records into the data file, and ship the file with your application.

Warning: Caution should be used when making any changes to
data files with the Database Manager. This is a programmer’s
tool for data file examination and correction, not an end user’s
tool for data maintenance. There are no controls to prevent
you from making changes which could compromise the Data
Integrity (invalid data values) or the Referential Integrity
(“orphan” Child records) of your Database.

Database Manager asks if you want to creates a backup copy before
modifying any data in a file. Creating a backup file allows you to cancel
changes you make while browsing a file. However, some file drivers do
not support the creation of a backup. When using one of those file
systems, you are not prompted for a backup.

Note: If you do not make a backup copy of the file when modifying
it, you will not be able to revert the file to its original state.

Editing Records

You can easily edit any field of any record in Database Manager.

1. Highlight the desired field in the desired record.

2. Choose Edit ➤ Change (or press ENTER).

You may now “edit in place.” New data is entered in either insert or
overwrite mode, depending on the last setting used.

3. To move between fields, press TAB to go to the next field, or
SHIFT+TAB to go to the previous field.

Adding Records

Database Manager allows you to enter new records in a file.

1. Choose Edit ➤ Insert (or press INSERT).

A new record is added at the bottom of the list. The cursor is
positioned in Edit Mode in the first field.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

2. Type the information you want to enter in a field, then press TAB to
go to the next field (or SHIFT+TAB to go to the previous field). Repeat
for all fields in which you want to enter data.

3. When you have completed all desired data entry for the record, press
ENTER.

The record is added to the file and keys are updated.

Editing Memos

You can edit a memo in ASCII Text or Hexadecimal format (Hex Mode).
Hex Mode editing is useful for memos which contain binary data.

To edit a Memo in Text Mode:

1. Highlight the record.

2. Choose Edit ➤ Edit Memo (or press CTRL+E).

3. If the file has more than one memo field, a list box appears. Select
the appropriate memo field.

4. Edit the memo.

To edit a Memo in HEX mode

1. Highlight the record.

2. Choose Edit ➤ Hex Edit Memo (or press CTRL+X).

3. If the file has more than one memo field, a list appears. Select the
appropriate memo field.

4. Edit the memo.

Showing Deleted Records

By default only active records are shown; however, you can display deleted
records. You can use this feature to browse recently deleted records or
undelete deleted records.

You can view deleted records in any file that does not have the
RECLAIM attribute. If a file does have the RECLAIM attribute, you
may still view a deleted record unless new a record has been added in its
place.

1. Choose Window ➤ Show Deleted.

A check mark appears next to the menu choice to indicate deleted
records are displayed.

CHAPTER 17 USING THE DATABASE MANAGER

When a deleted record is highlighted, the word Deleted displays at
the bottom of the window.

Undeleting Records

You can undelete a record in a file— if the file system supports it and the
file does not have the RECLAIM attribute. If a file does have the
RECLAIM attribute, you may still undelete a record unless new a record
has been added in its place.

1. Make sure your view includes deleted records (choose Window ➤
Show Deleted).

2. Choose Edit ➤ Undelete (or press CTRL+DELETE).

Holding and Releasing Records

Holding a record arms record locking in a multi-user environment.
Generally, this excludes other users from writing to, but not reading, the
record. The specific action HOLD takes is file driver dependent.

To hold the highlighted record:

1. Choose Edit ➤ Hold (or press CTRL+H).

To release the highlighted record:

1. Choose Edit ➤ Release (or press CTRL+R).

When a held record is highlighted, the Held box below the list box is
checked.

You can also hold or release the highlighted record by checking or
clearing the Held check box at the bottom of the window.

Sending a Driver String

Database Manager enables you to communicate with the file driver for
the open file. This is equivalent to issuing a SEND command.

Refer to the Database Drivers Appendix for valid driver strings for each
specific file driver.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Saving a File Definition as Source Code

Database Manager allows you to export the file definition to Clarion
source code. This code can later be “pasted” into another code segment
or used as part of a source code procedure.

To export a file definition:

1. Choose File ➤ Save as Source .

2. Specify the file label and file name for the source code.

3. Press the OK button.

The source code for the file definition is created.

CONVERTING A DATA FILE

The file conversion utility allows you to convert the records in an
existing data file to a new file format. When you modify a data
dictionary and application, you can use the conversion utility to convert
your existing data to the modified format.

The method you use to call the file conversion utility affects its behavior.
If you open the converter through the Dictionary Editor (with the
appropriate .DCT file open) the converter uses all the information in the
dictionary. If you open a file from any other area, only the information
stored in the file itself is available. The information stored in a file varies
with different file systems.

There are two methods of converting a file—immediate conversion and
Generating Source for File Conversion.

Automatic conversion runs the conversion process on a data file one
time. This is useful to convert your sample data during the development
process. Generating Source for File Conversion creates a source code file
and Project, allowing you to make any desired modifications before
compiling. Generating and compiling source also creates an executable
file that you can ship to end users to convert their data files to the new
format.

The conversion utility creates backup files for both conversion methods
(automatic or generate source). If you specify a target file name that
differs from the original, then the original files are not renamed and are
left in place.

CHAPTER 17 USING THE DATABASE MANAGER

Immediate Conversion

If a file's definition needs to be changed and meaningful data exists,
follow these steps to convert the file. This method does not create an
executable file. It converts the data file on your system to a new format.
If you want to create a file conversion program that you can ship with
your application, see Generating Source for File Conversion.

Tip: It is always a good idea to make backup copies of your files
before running any conversion process.

Note: If you change the name of a field, you must generate
source code, and edit the source code to make the field
assignments. Otherwise, your data will be lost.

1. Open (load) the dictionary that contains the file to be modified.

2. Modify the data file definition as desired (add fields or keys, change
the file driver type, etc.).

3. With the modified file highlighted, choose File ➤ Browse
<FileLabel> to load the data file in the Database Manager.

A message appears, warning that the physical file structure does not
match the dictionary declaration.

4. Press the Yes button to convert the file.

The conversion process is now complete and the file is displayed.

Generating Source for File Conversion

If a file's definition needs to be changed and meaningful data exists,
follow these steps to convert the file. This method creates an executable
file that you can ship to end users to convert their data files. If you want
to convert a file without creating a file conversion program see How to
Convert a File (without generating source) .

1. Open (load) the dictionary that contains the file to be modified.

2. Copy the data file definition to a new name. To copy a file definition,
highlight the file to be copied in the Files List and press CTRL+C, then
press CTRL+V to paste it. You will be prompted to supply a new name
and prefix. (Example - copy Customer to OldCustomer)

An alternative would be to copy the entire dictionary to a new name.
You might use this method if there are multiple files to be converted
in one session. Clarion for Windows allows files to be converted
from one dictionary to another.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

3. After the file definition has been copied, make any necessary
changes (add fields, change the file driver type, etc.) to the definition
with the original name. In our example above, the Customer file is
the file to be modified.

4. Save the Dictionary after file modification and close it.

The Dictionary file must be closed in order to use it for file
conversion.

5. Load the file in the Database Manager File utility (File ➤➤➤➤➤ Open ,
Database Tab)

6. Next, you will be prompted to pick a file to load. For this example,
you would select the Customer file.

The Customer file displays.

7. Choose File ➤➤➤➤➤ File Convert (or press CTRL+V).

The File Convert dialog appears, prompting for the information
below:

Source Filename Specifies the file to convert. This defaults to the
file opened by the Database Manager.

Source Dictionary Specifies the dictionary which contains the file
definition for the source data file. A Source
Dictionary is not required.

Source Structure Specifies the structure (within the dictionary)
which defines the source file. A Source
Structure is not required.

Target Filename Specifies the name of the new file. This defaults
to the current file name.

Target Dictionary Specifies the dictionary which contains the file
definition to which to convert. A Target
Dictionary is required.

Target Structure Specifies the structure (within the dictionary) of
the target file. The Target Structure is required.

8. Specify the file name for the generated source code of accept the
default of CONVERT.CLW.

9. Press the OK button.

This generates a source file. This file can now be compiled and
linked to an executable program which will perform the file
conversion.

CHAPTER 17 USING THE DATABASE MANAGER

NOTE: Prior to executing the source conversion program, the
current data file loaded into the Database Manager must be
closed.

10. Press the Exit button to close the data file in the Database Manager.

11. Load the conversion program by choosing File ➤➤➤➤➤ Open and
selecting the Source tab.

12. Select CONVERT.CLW (or the file name you specified) in the File
Open dialog. The conversion source code is displayed in the Text
Editor.

Tip: If you changed the name of a field, edit the source code to
make the field assignments. Otherwise, your data will be lost.
See Editing Source Code to Make Field Assignments.

13. The project file must now be loaded. Choose Project > Set. Select
the project file. This defaults to CONVERT.PRJ.

14. Finally, you may now Make and/or Run the conversion program.

After the conversion program runs:

15. Check the file that has just been converted by loading the new
(target) file back into the Database Manager.

After viewing the file converted, some clean up steps are all that's
left to do:

16. If the file converted was located in a different directory, you may
now copy it into the working program directory. If you had
originally renamed the file and placed it in the same directory, you
may rename it to the original file name at this time.

17. The "old" file definition may now be deleted from the active
dictionary, or archived into a backup dictionary file.

The conversion process is now complete. This example creates
CONVERT.EXE which may be shipped to end users to convert their
files.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Editing Source Code to Make Field Assignments

The File Conversion Utility creates source code to convert a file to a
different specification. The conversion is handled automatically except in
two cases:

◆ If a field’s label is changed

◆ If a field is split into two separate fields.

In these cases you must modify the source code to handle the field
assignments. The portion of the source code you’ll need to examine is
the AssignRecord ROUTINE. This is where field assignments are made.
Here is an example:

AssignRecord ROUTINE
 CLEAR(CUS:Record)
 CUS:NUMBER = IN::NUMBER
 CUS:FIRSTNAME = IN::FIRSTNAME
 CUS:LASTNAME = IN::LASTNAME
 CUS:ADDRESS = IN::ADDRESS
 CUS:CITY = IN::CITY
 CUS:STATE = IN::STATE
 CUS:ZIP = IN::ZIP
 CUS:PHONENUMBER = IN::PHONENUMBER

If you examine the source code, you’ll see that the first line in the routine
clears the record buffer. Next each field in the output file is assigned the
value from the matching field in the input file. However, if the field
labels do not match, no assignment is made. For example, if you change
the LastName field to Surname, an comment statement is generated to
alert you of an assignment that may need to be made:

AssignRecord ROUTINE
 CLEAR(CUS:Record)
 CUS:NUMBER = IN::NUMBER
 CUS:FIRSTNAME = IN::FIRSTNAME
 ! CUS:SURNAME = ‘’
 CUS:ADDRESS = IN::ADDRESS
 CUS:CITY = IN::CITY
 CUS:STATE = IN::STATE
 CUS:ZIP = IN::ZIP
 CUS:PHONENUMBER = IN::PHONENUMBER

To assign the values from the original file, edit the line containing the
assignment to assign the value of LastName to the SurName field as
shown below:

 CUS:SURNAME = IN::LASTNAME

CHAPTER 17 USING THE DATABASE MANAGER

Writing the assignment statements to split the contents of a field into
two fields involves a little more work, but using string slicing minimizes
the effort. For this example, let’s assume that you had a single field in
the original file for a phone number and area code. You now want to
store the area code in one field and the phone number in a another.
Assuming that these fields are numeric data types, you will need to
temporarily assign the value to a string, then slice the string to assign the
desired portion to each new field. In this example the original
PhoneNumber field is a ten-digit number, the area code is a three-digit
number, and the new PhoneNumber field is a seven-digit number. The
AssignRecord ROUTINE in the generated file conversion source code
will look like this:

AssignRecord ROUTINE
 CLEAR(CUS:Record)
 CUS:NUMBER = IN::NUMBER
 CUS:FIRSTNAME = IN::FIRSTNAME
 CUS:LASTNAME = IN::LASTNAME
 CUS:ADDRESS = IN::ADDRESS
 CUS:CITY = IN::CITY
 CUS:STATE = IN::STATE
 CUS:ZIP = IN::ZIP
 ! CUS:AREACODE =
 CUS:PHONENUMBER = IN::PHONENUMBER

Notice that there is an assignment from the original PhoneNumber field
to the new PhoneNumber field. However, since the new field only stores
seven digits, you must edit this. To handle the field assignments, you
will create an implicit string variable, assign to it the value of the
original PhoneNumber field, then use string slicing to assign the desired
portions to the new fields, as shown below:

AssignRecord ROUTINE
 CLEAR(CUS:Record)
 CUS:NUMBER = IN::NUMBER
 CUS:FIRSTNAME = IN::FIRSTNAME
 CUS:LASTNAME = IN::LASTNAME
 CUS:ADDRESS = IN::ADDRESS
 CUS:CITY = IN::CITY
 CUS:STATE = IN::STATE
 CUS:ZIP = IN::ZIP
 TempPhoneNumber” = IN::PHONENUMBER
 CUS:AREACODE = TempPhoneNumber”[1:3]
 CUS:PHONENUMBER = TempPhoneNumber”[4:10]

For more information on String Slicing, see Implicit Arrays and String
Slicing in Chapter 4 of the Language Reference.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

PRINTING DATA

You can print data from Database Manager. You can use these simple
reports to look at the data in your files.

To print data:

1. Choose File ➤ Print.

The Print dialog appears, allowing you to select the report’s format.

2. Select the appropriate radio buttons from the Print... group to
specify the records to print.

Current Record Prints only the currently highlighted record.

Current Page Prints only the records currently displayed on
screen.

All Records Prints all records in the file.

Use Filter Prints only those records which match the filter
created in the Query-by-Example dialog.

3. Select the appropriate radio buttons from the Print Mode group to
specify the report format.

Columnar Prints the records in a “spreadsheet” type of
format in which each field in the record is a
separate column.

Tabular Prints the records in a “form” type of format in
which each field in the record is on its own
separate print line.

4. If you selected Columnar, specify the number of records to print
side-by-side in the Columns field.

5. If you selected Tabular, specify the total number of characters to
print for one record in the Table width field.

6. If you want to print column headings in Columnar Mode or field
labels in Form Mode, check the Print Header box.

7. Press the Print Button to print the selected record(s).

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

WWWWWINDOINDOINDOINDOINDOWSWSWSWSWS D D D D DESIGNESIGNESIGNESIGNESIGN I I I I ISSUESSSUESSSUESSSUESSSUES

This chapter provides an introduction to:

◆ The design principles which Microsoft suggests for designing the
user interface of Windows-based applications.

◆ Event driven programming and how it should influence your
application’s design process.

◆ The types of windows, controls, cursors, and other objects common
to Windows applications.

◆ The standard menus and menu commands recommended for
Windows applications.

◆ The use of color and how it relates to the user.

OVERVIEW

If you make your program look and act like other Windows programs,
your users will learn it more quickly, and feel more confident using it to
accomplish the tasks you designed it to do. The Graphical User Interface
(GUI) environment demands that you address your users on their terms.
The program design must reflect that the user is in control, both visually
and in the underlying structure of program flow.

Microsoft makes specific recommendations on what a Windows
application should look like, and how the controls in a window should
look and act. There is even a set of standard menu and command
recommendations.

This chapter also discusses the use of color in your application.

APPENDIX A WINDOWS DESIGN ISSUES

DESIGN PRINCIPLES

Apple, in its Human Interface Guidelines, IBM, in its Common User
Access: Advanced Interface Design Guide, and Microsoft, in The
Windows Interface: an Application Design Guide have all published
detailed design principles for software designers working in popular GUI
environments. Creating a standard for program design offers these
advantages:

◆ Given consistency between applications, users learn new
applications more quickly and easily, minimizing the need for
training.

◆ Consistency between applications increases the level of confidence
in the user, resulting in increased productivity.

There are two especially important Windows design principles for the
Clarion programmer to keep in mind when designing the user interface.
The first is user control—providing a real-world based metaphor for the
program’s organization, and maintaining a consistent look and feel for
all parts of the program, builds the user’s confidence. The second is to
remember that Windows programming is event driven—the user decides
the next action. The programmer’s responsibility is to provide a visual
list of options the user can act upon.

User Control

Your users may not have years of experience using a wide variety of
programs. Providing a metaphor from the real world will help provide a
‘setting’ or group of expectations to apply to your program. A word
processing program, for example, utilizes a ‘paper’ metaphor—the
document is like a piece of paper to write on, erase characters from, etc.
Many database programs use Rolodex card metaphors. By establishing a
relation to the real world, you increase the comfort level of your users,
and actively engage them in the work of the program.

Visual consistency is very important. As much as possible, an application
should utilize a single way to implement actions. A user learning a new
procedure in your program builds upon prior experience with other
procedures in the same program. Creating a standard look for your
dialog boxes, and making screens for similar tasks look like one another,
also reduces the time it takes you to design the different screens your
program requires.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Directness makes a user feel they are in charge. Moving a document
from one folder to another, or moving one icon to another, such as the
Recycle Bin icon, can seem to a user to be a real action. Clarion provides
drag-and-drop server support, which allows you to create, for example,
an icon with a picture of a person on it, representing an employee record.
A user might drag the icon to another representing money, to open a
dialog box displaying the employees’s payroll records.

Simplicity is usually the best design. Cluttering the screen with too many
windows, buttons, icons, lists and other objects can confuse the user.
Dialog boxes especially, usually must fit in a small space, so their
messages must be simple. The same is true for colors. Limit the use of
colors to areas where they are needed to provide emphasis, such as red
text for an important message.

Let the user know what’s going on—provide feedback. When the user
chooses a command or begins an operation, visual feedback should
confirm it is being carried out. The confirmation may be graphical, such
as a cursor change, or simply a progress bar or message on the status bar.
If there will be a delay while the program finishes another operation,
inform the user, and advise, if possible, how long it will take.

Your application should use plain language. When designing an
application for a corporate environment, technical terms are often
essential. Watch out for the times when plain English is better. Of special
importance to the programmer, who may be new to Windows
programming—beware of “Window-isms.” It’s very easy to create two
buttons marked “OK” and “Cancel.” Yet “Yes” and “No” are far better
button labels when the question is: “Do you wish to delete this record?”

EVENT DRIVEN PROGRAMMING

Related to user control issues, and the most important paradigm shift for
new Windows programmers, is that you must design Windows programs
to be event-driven. In a multi-tasking environment, a program simply
cannot direct the sequence of program action—the user directs it.

The underlying structure of Windows is such that the operating system
informs the program via messages just what it is the user wants the
program to do. This is the opposite of DOS programming.

APPENDIX A WINDOWS DESIGN ISSUES

Windows messages inform a program when a menu is selected, when a
window is selected, when the user wants to shut down the operating
system—the Windows 3.1 Software Development Kit documentation
devotes over 200 pages just to listing and explaining the different
messages. Most programming languages require elaborate message
handling procedures to branch program flow upon receiving different
types of Windows messages.

Clarion automatically handles the housekeeping associated with message
handling. The ACCEPT loop frees the Clarion programmer from
worrying about system messages. Yet you still must consider the event-
driven model when designing your program.

A Windows program must constantly look for input—in the form of data
entry in an edit box, for example. In a window with several fields, the
user can TAB or CLICK with the mouse to make any of them active. You
must plan your input dialogs accordingly.

Additionally, your users will expect a complete set of user interface
elements, including menus, multiple windows and graphical controls, all
available simultaneously.

You may create an application which allows the user to open two
windows, with markedly different functions. Clarion will automatically
handle events generated within each window. Yet what about the menu
commands, or the tool bar? You should plan these so that the commands
will act on any active window. Clarion helps you do this automatically
when creating an application using Multiple Document Interface. There
may be times, however, when you may need to manually disable and re-
enable menu commands.

Finally, the event-driven model should influence the windows you
design for your application. Plan on utilizing your main application
window as the backbone for your program. Generate another window—
dialog box, MDI window, etc.—only upon some user action in the main
window.

WINDOWS AND WINDOW ELEMENTS

This section describes common Windows elements, including window
types and controls. Choosing the right element for the right procedure
will help your users get the most out of your program.

There are three types of windows: application, document and dialog
boxes.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Application Window

The application window should usually contain all the other windows
your program may generate. If you open a browse window, it should
appear inside the application window. If a user re-sizes an application
window to a smaller size, you may allow your other windows to appear
partially outside it. Additionally, you may allow users to move moveable
dialog boxes outside the application window.

Application windows should always contain a title bar that contains the
name of your application. Microsoft recommends that application
windows also contain sizable frames, a Control-menu box, and
Minimize and Restore buttons. In Clarion, you add these attributes to the
window via the Window Properties dialog.

MDI

Clarion enables the Multiple Document Interface (MDI). This manages
multiple documents or multiple views of the same document, each in a
separate window which appears inside the main application window. If
the user re-sizes the application window to make it smaller than the
document window, the document window will appear clipped.

In database programming, the document “file” is often the database. Use
document windows to display browse windows, views, and queries.
Since Clarion provides the tools to do virtually anything in a document
window, be conservative in your use of document windows. Do use a
document window to display the contents of a text file, for example, as a
graphics viewer, or to view a report. Don’t use a document window for
procedures which belong in a dialog box, such as record entry.

Microsoft recommends each document window contain a title bar with
the name of the document, a Control-menu box, and a Maximize button.
Optionally, you can include a minimize button.

Dialog Boxes

Use a dialog box when you require additional information from a user to
complete a task. Adding a record to the database is an example of a
task—data entry for the new record would be the process of getting
additional information.

APPENDIX A WINDOWS DESIGN ISSUES

The Windows design guidelines for dialog boxes are very flexible. They
may be movable, or maintain a fixed position. They may have a single
size, or a ‘More >> ’ button to make it unfold and offer additional
options. They may be modal or modeless. They may present a brief
message with only an ‘OK’ option, or provide complex choices,
controls, and entry options. Since the guidelines allow for wide
variation, this section will only present a few pointers which will help
you design dialogs that are easier to use.

❏ Using either the dialog box caption bar or static text in the box,
briefly explain the function of the dialog, or indicate which
command caused it to appear.

❏ Set as many controls to the default setting as possible, so that you
require the least amount of entry on the part of the user.

❏ Place the most important information at the upper left, the least
important at the lower right. Your users read from left to right, top to
bottom—this is the natural way in which they expect to enter
information.

❏ Set the focus to the first text edit (entry) box. This allows the user to
simply type a word or words at the keyboard without having to
position the cursor.

❏ Place dialog box default buttons—the most likely user choice—on
the right. This gives the user to opportunity to ‘read’ the choices on
the left before presenting the ‘decision.’

❏ When presenting a brief message, take advantage of the default icons
available using the MESSAGE function. The Stop, Information, and
Question icons are familiar to users from other applications.

Buttons

A button initiates an action. When the user presses a button, the button
appears to be depressed. When a button action is unavailable, the button
label should be dimmed.

Clarion allows you to use either text, graphical labels (picture buttons),
or both. If you are using picture buttons you should include tool tips to
allow the user to see, in words, what action the button will initiate. Stick
to standard bitmaps (such as the icons many bestselling applications use
for File ➤ Open , File ➤ Save , etc). Too many picture buttons in a
window can be confusing to the user. Some reviewers have accused
programs of “iconitis”—having so many graphical buttons on the screen
at once that it’s impossible for users to remember which button executes
which action.

Buttons can perform several types of actions.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

◆ A button may initiate an action.

◆ A button may close the active dialog box, then open another, related
dialog.

◆ A button may open another dialog on top of the current one, without
closing the current one.

◆ A button may “unfold” or resize the dialog window to include more
options.

◆ A button can turn the “page” on a wizard dialog.

Always designate one button as the default. When the user presses ENTER,
it will initiate the default button action. Microsoft also suggests that you
not assign a mnemonic—for example, “&OK,” which appears as OK—to
a default button.

Check Boxes

Check boxes control true/false, yes/no, on/off or logical variables. The
user toggles the state by CLICKING on the box, or pressing the SPACEBAR. If
a check box option is unavailable, the label should be dimmed.

Radio Buttons

Radio buttons, also referred to as option buttons, present the user with a
single choice in a mutually exclusive set of choices. The user may select
only one at a time. If space is at a premium, and the number of choices is
greater than four, consider a drop down list box, which takes up less
space.

List Boxes

List boxes display choices for the user. If a choice is unavailable, in
general you should drop it from the list. If the choice is important
enough that the user should know it is unavailable, Microsoft
recommends it appear in the list box as a dimmed selection.

Always allow your list boxes enough room. Try to allow vertical space
for three to eight choices; horizontal space for the average length of
selection text plus several extra spaces.

Remember that a list box can present a user with a great deal of
information—keep it simple!

APPENDIX A WINDOWS DESIGN ISSUES

Combo Boxes

A combo box is a combination of text box and list box. They are
appropriate where the data lends itself to possible responses, but allows
the user to type in a response not in the list.

The design guidelines for list boxes apply to combo boxes.

Drop-Down Boxes

Drop-down single-selection lists perform the same function as list boxes,
but take up less space. When closed, the drop-down is only tall enough
to show one selection. Opened, the list will show more items, like a
standard list box.

Novice users often have much more difficulty selecting an item from a
drop-down than from a normal list box. Whenever space permits, use
radio buttons (for four choices or less) or normal list boxes.

Text Boxes

Text boxes allow the user to type in information. They may be single line
or multi-line. Multi-line edit boxes should usually provide a vertical
scroll bar.

The standard Windows accelerator keys for copy, paste, etc., are active
by default. This is useful, because it enables the user to copy, for
example, a paragraph from another application, then paste it directly into
a multi-line text box in your application. For this reason, we recommend
you do not reassign the default windows editing shortcut keys—such as
CTRL+C for copying or CTRL+V for pasting—to alternate commands in
your Clarion application.

Fixed-length, auto-exit text boxes may speed up data entry. As soon as
the user fills the text box (by typing the maximum allowable characters),
the focus moves to the next control. Microsoft recommends applications
use this type of text box sparingly, as the shift of focus may be
disconcerting if it catches a user by surprise. We recommend using this
type of text box when there are many fields to enter in a dialog. For
dialogs with only a few fields, the programmer should try to anticipate
what the end user will expect, and choose accordingly.

Clarion allows you to select the font for text boxes. We suggest using the
default system font (which is a helvetica font, 10 pts., bold style).
Microsoft specifically chose this font for menus and other system items
because it is especially easy to read on a monitor.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Spin Boxes

Spin boxes are specialized text boxes with a pair of arrows (spin buttons)
attached to the right of the text box. Spin boxes accept a limited set of
values, which the user may type in, or by using the arrows, increase or
decrease the value by a specified unit. Spin boxes can provide an
alternative to drop-down lists when the set of values is limited in
quantity and fits into a natural progression; for example, ‘Spring,
Summer, Fall, Winter.’

Besides increase or decrease controls for simple numbers or choices, you
may use spin boxes to manipulate values that consist of several
components. You may display time in hours, minutes and seconds, for
example. Be sure to visually separate each component with a relevant
separator character, such as a colon.

Static Text

Static text should present read-only information, such as directions for
entering data in the other controls in the dialog box. You should also use
static text to label controls not automatically labelled by the Window
Formatter, such as a text box.

Clarion allows you to select the font for static text. We suggest using the
default system font (which is a helvetica font, 10 pts., bold style).
Microsoft specifically chose this font for menus and other system items
because it is especially easy to read on a monitor. You should certainly
feel free to make the text bigger, as in creating a ‘title’ for a dialog box
‘form.’

We also advise you to resist the temptation to use odd or too many
different colors for static text. You never can tell what the default
window background will be.

Group Boxes

Group boxes provide a visual grouping for related controls. They consist
of a rectangular frame with a label at the upper left.

A group box can guide the user directly to the controls that are most
important to the task at hand. If your application requires a dialog with
more than ten controls or fields, we highly recommend taking a moment
to consider whether some of the controls fit into logical groups.

APPENDIX A WINDOWS DESIGN ISSUES

Sheets and Tabs

The Property Sheets with tabs provide another method of grouping
related controls, by allowing you to place controls with similar or related
functions on separate “pages.”

Tabbed dialogs can “flatten” your application, by reducing the number of
visible controls and displaying only those that are most important to the
task at hand. If your application requires a dialog with more than ten
controls or fields, you should consider a “multi-page” approach.

Keep in mind that Required Entry fields should be on the first visible
tab.

Wizards

The WIZARD attribute on a Property Sheet control allows you to control
the user’s movement through the tab “pages.” This allows you to present
a series of dialogs in a linear fashion. Optionally, you can control the
next “page” based on the answers the user provides in previous pages.

Wizards have become increasingly popular because they allow the user
to answer only one question at a time decreasing the chances of
confusion or error.

Control Labels

The Window Formatter automatically supplies labels for many, but not
all controls. You may supply labels for the other controls using static
text. Not only will this identify the control for the user, but it also will
allow keyboard users to quickly direct the focus to the control.

When the user keys in the mnemonic (such as the “S” in ‘Daily Sales ’),
Windows automatically directs the focus to the next control after the
static text label. Thus, you may place ‘Daily &Sales’ to the left of a
drop-down box. When the user presses ALT+S, the combo box will
receive the focus. The keyboard user will merely have to press the DOWN

ARROW key to view the choices in the list.

Microsoft suggests the following guidelines for control label text:

❏ Capitalize the first letter of each word, except for articles (e.g., a, an,
the), coordinate conjunctions (e.g., and, or, for), prepositions (e.g.,
by, with) or the word “to” in infinitives.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

❏ Try to use the first letter of the first word for the mnemonic. Since
the mnemonics need to be unique, however, this isn’t always
possible. Alternately, use another letter if it allows a stronger
mnemonic link: such as the “x” in “Exit ”. If the first word in the
control label is less important than another, use the other (e.g., “by
Ascending Order ”).

❏ Choose consonants over vowels: they are more distinctive and more
easily remembered.

Microsoft also suggests the following positioning for control labels for
the following controls:

◆ Command buttons: inside the button.

◆ Check boxes, radio buttons: to the right of the control.

◆ Text boxes, spin boxes, lists, combo boxes: above or to the left of the
control. Place a colon after the last word of the label. Left align the
label with the section of the dialog box in which it appears.

Cursors

In a graphical environment such as Windows, the mouse cursor, or
screen pointer, is the means by which the user shows the application
what to do next. For example, the I-bar, or insertion point, may tell a
word processing application where the next characters typed by the user
should appear. This is a key part of the ‘event driven programming’
referred to earlier in this chapter.

Though Microsoft has not set specific guidelines for the use of each
system cursor, the following uses have evolved into standards across
GUI platforms:

Arrow: selects controls and menu commands.

I-beam: selects and inserts text.

Crosshairs: draws and manipulates graphics.

Plus sign: selects fields in an array.

Hourglass: shows that a lengthy operation is in progress.

APPENDIX A WINDOWS DESIGN ISSUES

MENUS

Menus display the range of commands available for the user to execute.
Windows users are accustomed to standard menus and commands which
appear in many different applications. If you utilize these same menus,
new users may learn your application more easily, and the sense of
familiarity will increase all users’ confidence and productivity levels.

When designing additional, custom menus and commands, bear in mind
that the model for GUI design is the ‘Noun-Verb.’ principle. Apple
fancifully refers to this as ‘Hey you—do this!’

In the ‘Noun-Verb’ model, the user points to something—for example,
an on screen object such as text. This is the noun. The model assumes
that the next command action the user chooses will tell the application
what to do to the noun. The action is the verb. If you word your menus
and commands in a way that the menu - command is a short ‘do this’
sentence—such as “Insert ➤ Record ,” “ View ➤ Transaction ,” “ List ➤

Activity ,” or “Select ➤ Current Group ,” your menus will gain added
clarity.

This guideline should not severely limit you. There are times when it is
most appropriate to use a single menu item to initiate complicated
instructions, such as bringing up a dialog box with many different
preferences and options for the user to set. When doing so, add an
ellipsis (...) following the last word of the menu command.

The following discusses the standard menu implementations
recommended by Microsoft:

File Menu

Many database applications do not naturally lend themselves toward
allowing the user to open and close external document files. In the
simplest case, a database or databases open automatically with the
application, and user editing is limited to editing individual records.
Clarion programmers may wish to limit commands on the file menu to
those that affect the global operation of the application—Printer Setup
and Exit , in the most extreme case. At the very minimum, your Clarion
applications should have a File ➤ Exit command: this is how users
expect a Windows application to allow them to quit the program.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

New or New... Creates a new file with a default name such as
‘Untitled.’ This is sometimes a problematical
menu item when creating database applications.
Unless your application allows the user to create
a new database, or creates separate editable
external files (such as text files) Clarion
programmers may wish to drop this command.

Open Displays the File Open dialog, from the
Windows common dialog library. Allows the
user to open external files.

Save Saves the active document. For a new file, calls
the Save As dialog.

Save As Displays the Save As dialog, from the Windows
common dialog library.

Print or Print... Prints the active document, or leads to a dialog
allowing the user to set print options.

The Print command can be an interesting one in
a database application. Many times, a database
application allows the user only to print pre-
formatted reports.

Other ‘docu-centric’ Windows applications may
simply go ahead and print the current document
in its entirety—but a database application can
hardly be expected to print a 30,000 record
database as the default print preference.

One solution some popular applications utilize
is to drop the print command entirely and
provide a separate Report menu. This is a good
solution for an application with a limited
number of reports. Alternatively, an application
with a limited number of reports might also
utilize a cascading menu, attached to the File ➤

Print command.

For an application with a large number of pre-
formatted reports, one solution might be to
present a list box in a dialog window when the
user selects the File ➤ Print command.

Print Setup Displays the Printer Setup dialog, from the
Windows common dialog library.

APPENDIX A WINDOWS DESIGN ISSUES

This dialog allows the user to change the active
printer and/or specify settings for the selected
printer.

Exit Closes all application windows and terminates
the application. If don’t have a File menu in
your application, place your Exit command on
the leftmost application menu, as the last
command on the menu.

Edit Menu

The Edit menu usually provides commands for reversing the user’s last
action, plus the clipboard editing commands: cut, copy and paste.

Undo The Undo command should reverse the user’s
last action. It must always be the first command
on the Edit menu, if your application supports
undo.

Clearly, database programs present special
problems for Undo. In general, Windows
applications disable the Undo command after a
file operation, such as when a File ➤ Save
command saves an edited document to disk. A
database application may easily present a
situation in which it writes data to disk every
few seconds when, for example, a user enters a
group of new records.

Cut Transfers a selected object to the clipboard and
deletes it from the field.

Copy Places a copy of a selected object in the
clipboard.

Paste Places a copy of an object previously placed in
the clipboard into the current field.

Clarion automatically enables clipboard support
for Cut , Copy and Paste when in an edit box.
The default accelerator keys for these actions are
CTRL+X, CTRL+C and CTRL+V respectively.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Help Menu

The Help menu provides the user with access to the Windows Help
system. It should always be the last menu on the right. The Help menu
usually contains the following commands:

Contents Loads the Windows Help system, then opens the
external Help file to the main contents page.

Search for Help On This loads the external Help file, then
automatically opens the Search dialog. This
allows the user to type in a word; if the word
appears as a topic title, the Help system jumps
to the title.

How to Use Help This opens the Windows Help system, and
displays the instructions for using it. The file
“WINHELP.HLP,” which Windows
automatically installs, contains the instructions.

View Menu

Microsoft defines the View menu as optional, and states that it includes
commands for changing how the program presents the data to the user,
without changing any of the data. As such, it presents a natural means for
a database application to allow different browse options on a single
database.

The View menu may also present options for displaying various interface
elements such as toolbars, status bars, and other special controls that are
part of the application window. There are no specific command text
suggestions for the View menu.

Window Menu

This is an optional menu. If you choose to support the Multiple
Document Interface (MDI) in your application, the Window menu allows
the user to manipulate entire child windows.

The commands for this menu are flexible. Common commands include:

Tile Arranges child windows end-to-end, so that all
are visible.

Cascade Arranges child windows in an overlapping
fashion, so that the title bar of each is visible.

APPENDIX A WINDOWS DESIGN ISSUES

The Window menu may also contain a numbered list of up to nine open
child windows. A number should precede each child window name.
When the user chooses a window from the list, the window should
receive the focus.

Accelerator Keys

A number of commands have gained standard accelerator (or alert, or
hot) keys. When creating your application, should you utilize any of the
following commands, we recommend you use the following keys:

Command Accelerator

File ➤ New CTRL+N

File ➤ Open CTRL+o
File ➤ Save CTRL+s, or SHIFT+F12

File ➤ Exit ALT+F4

Edit ➤ Undo CTRL+z
Edit ➤ Cut CTRL+x
Edit ➤ Copy CTRL+c
Edit ➤ Paste CTRL+v

COLOR

Color will greatly affect how your user works with your application.
Microsoft does not publish standard guidelines on color usage—yet.
When designing your application, the following guidelines may help
you:

❏ Windows allows users to select default colors for window text and
background. It’s best to accept these default colors for the parts of
the program which require the most data entry: the user has
expressed a preference, so you should respect it!

❏ Without forgetting the first point, you may choose to accentuate
windows and screen elements by using color. Color can set off
specific areas in a window—it can be more effective than a group
box.

❏ Use color to discriminate between different parts of your program.
For example, you may associate one window background color for
dialog boxes related to accounts receivable data entry, and another
for payables.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

❏ Use color to visually relate similar parts of the program. For
example, you may associate one window background color with
phone number data.

❏ Use standard cultural associations for special alerts. In western
culture, the most ‘meaningful’ colors are probably the ones on the
traffic lights: red, yellow and green. You may use red to signal a halt
in a procedure. You may use yellow to signal a warning. Green, of
course, means go, all clear.

❏ When adding color to text elements, remember that most colors look
best against a neutral grey background. If you don’t use grey, be sure
there is a high contrast between the text and the background color. In
dim lighting, color tends to wash out.

❏ Bear in mind that 8% of males in Europe and America have some
degree of color blindness. The most common type reduces the ability
to distinguish red and green from gray. In a less common type, the
user cannot distinguish between yellow, blue and gray.

❏ Remember that on monochrome LCD screens, light blue is very hard
to distinguish from gray and white.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

DDDDDAAAAATTTTTABASEABASEABASEABASEABASE D D D D DRIVERSRIVERSRIVERSRIVERSRIVERS

Clarion for Windows achieves database
independence with its built-in driver
technology, enabling you to access data from
virtually any file system. Many file drivers are
available and more are being added. All of the
file drivers read and write in the file system’s native format without
temporary files or import/export routines.

Often, your application’s main purpose is accessing existing data in its
original format. For those times, you just plug in the appropriate file
driver. For the times when you’re not “locked into” a particular file
system, this appendix provides tips on the file drivers best suited for
different jobs. You can choose the right tool depending on the type, size,
and nature of the data files necessary for your application.

The commands for accessing data from different systems are the same;
simply choose the correct file driver from the drop down list within your
Data Dictionary, and don’t worry about it.

There are settings you can specify, with driver strings (the second
parameter of the DRIVER attribute), to optimize the way your
application creates, reads, and writes data files for a specific driver. To
specify a driver string with the Data Dictionary, type it in the Options
field in the New File Properties dialog, as described in the Using the
Dictionary chapter. To send a driver string in executable code (after the
application initializes the driver), use the SEND() function, described in
the Language Reference.

Driver strings are all preceded by a forward slash character (/). SEND
function commands can take two formats—one with an equal sign to
modify a switch setting, the other without an equal sign to return the
value of the switch.

Driver strings are sent to the file driver when the file is opened. The
SEND function sends a command to modify a setting. Some driver
strings have no effect after the file is open, so the SEND function syntax
to modify the setting is not listed. However, the SEND function to return
the value of the switch is valid for all driver strings.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

ASCII FILES

The ASCII driver reads and writes standard ASCII files without field
delimiters. This is often used for mainframe data import/export via an
ASCII flat-file. A carriage-return/line-feed delimits records. The ASCII
driver does not support keys.

Files: CWASC16.LIB Windows Export Library (16-bit)

CWASC32.LIB Windows Export Library (32-bit)

CLASC16.LIB Windows Static Link Library (16-bit)

CLASC32.LIB Windows Static Link Library (32-bit)

CWASC16.DLL Windows Dynamic Link Library (16-bit)

CWASC32.DLL Windows Dynamic Link Library (32-bit)

Tip: Due to its lack of relational features and security (anyone can
view and change an ASCII file using Notepad), it’s unlikely
you’ll use the ASCII driver to store large data files. But it can
help you create a text file viewer—use it to open a file, and
read it in to a multi-line edit or listbox control!

Supported Data Types
STRING
GROUP

File Specifications/Maximums
File Size: 4,294,967,295 bytes
Records per File: 4,294,967,295 bytes
Record Size: 65,520 bytes
Field Size: 65,520 bytes
Fields per Record: 65,520 bytes
Keys/Indexes per File: n/a
Key Size: n/a
Memo fields per File: n/a
Memo Field Size: n/a
Open Data Files: Operating system dependent

APPENDIX B DATABASE DRIVERS—ASCII FILES

Driver Strings and SEND functions

Driver strings (the second parameter of the DRIVER attribute) are all
preceded by a forward slash character (/). SEND function commands
can take two formats—one with an equal sign modifies a switch setting
and return the value of the previous switch setting; the other format
(without an equal sign) returns the value of the switch.

Driver strings are sent to the file driver when the file is opened. The
SEND function sends a command to modify a setting after the file is
open. Some driver strings have no effect after the file is open, so the
SEND function syntax to modify the setting is not listed. However, the
SEND function syntax to return the value of the switch is listed for all
driver strings.

/FILEBUFFERS=n Specifies a value for the number of buffers used
to read and write to the file. The ASCII driver
allocates internal buffers of 512 bytes, or the
size of the record, whichever is larger. The
default number of buffers is 2 for files opened
denying write access to other users, and 1 for all
other open modes. Use the optional driver string
to increase the buffers should you find access to
records is slow.

SEND(file, ‘FILEBUFFERS’)
Returns a STRING containing the number of
bytes in the buffers in STRING format

/TAB= n Specifies TAB/SPACE expansion. The ASCII
driver expands TABs (ASCII character 9) to
spaces when reading. The value indicates the
number of spaces with which to replace the tab,
subject to the guidelines below. The default
value is 8.

If n > 0 , spaces replace each tab until the
character pointer moves to the next multiple of
n. For example, with the default of 8, if the TAB
character is the third character in the record, 6
spaces replace the TAB.

If n = 0, the driver removes tabs without
replacement.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

If n < 0, the driver removes tabs with the
positive value of n spaces. For example, “TAB=-
4” causes 4 spaces to replace every tab,
regardless of the position of the tab in the
record.

If n = -100, tabs remain as tabs; the driver does
not replace them with spaces.

SEND(file, ‘TAB’) Returns the number of spaces which replace the
tab character in the form of a STRING.

/ENDOFRECORD=n,<m> Specifies the end of record delimiter.

n represents the number of characters that make
up the end-of-record separator.

m represents the ASCII code(s) for the end-of-
record characters, separated by commas. The
default is 2,13,10, indicating 2 characters mark
the end-of-record, namely, carriage return (13)
and line feed (10).

SEND(file,’ENDOFRECORD’)
Returns the end of record delimiter in the form
of a STRING.

Tip: Mainframes frequently use a carriage return to delimit
records. You can use /ENDOFRECORD to read these files.

/QUICKSCAN=on|off

SEND(file,’QUICKSCAN=on|off’)
Specifies buffered access behavior. The ASCII
driver reads a buffer at a time (not a record),
allowing for fast access. In a multi-user
environment these buffers are not 100%
trustworthy for subsequent access, because
another user may change the file between
accesses. As a safeguard, the driver rereads the
buffers before each record access. To disable the
reread, set QUICKSCAN to ON. The default is
ON for files opened denying write access to
other users, and OFF for all other open modes.

SEND(file,’QUICKSCAN’)
Returns the Quickscan setting (ON or OFF) in
the form of a STRING(3).

APPENDIX B DATABASE DRIVERS—ASCII FILES

/CLIP=on|off The driver automatically removes trailing spaces
from a record before writing it to file. To disable
this feature, set CLIP to OFF. The default is ON.

SEND(file,’CLIP’)
Returns the CLIP setting (ON or OFF) in the
form of a STRING(3).

Unsupported Functions and Attributes

Memos: NOMEMO()

Transaction Processing: COMMIT(), LOGOUT(), ROLLBACK()

Key Processing:
BUILD(key), BUILD(index)
GET(file,key), GET(key,keypointer)
RESET(key,string)
SET(file,key), SET(key), SET(key,key),
SET(key,keypointer), SET(key,key,filepointer)
DUPLICATE()
POINTER(key)
POSITION(key)
RECORDS(key)
REGET(key,string)

Record Locking: HOLD(), RELEASE()

File Buffering: STREAM()

File Information: RECORDS(file)

Sequential Processing: PREVIOUS(), BOF(), SKIP()

File Manipulation: BUILD(), DELETE(), PACK(), WATCH(), REGET()

Miscellaneous

❖ POSITION(file) returns a STRING(4).

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

BASIC FILES

The BASIC file driver reads and writes comma delimited ASCII files.
Quotes (“ “) surround strings, commas delimit fields, and a carriage-
return/line-feed delimits records. The original BASIC programming
language defined this file format. The Basic driver does not support
keys.

Tip: The Basic file format provides a good choice for a common
file format for sharing data with spreadsheet programs. A
common file extension used for these files is *.CSV, which
stands for “comma separated values.”

Files: CWBAS16.LIB Windows Export Library (16-bit)

CWBAS32.LIB Windows Export Library (32-bit)

CLBAS16.LIB Windows Static Link Library (16-bit)

CLBAS32.LIB Windows Static Link Library (32-bit)

CWBAS16.DLL Windows Dynamic Link Library (16-bit)

CWBAS32.DLL Windows Dynamic Link Library (32-bit)

APPENDIX B DATABASE DRIVERS—BASIC FILES

Supported Data Types
BYTE DECIMAL
SHORT PDECIMAL
USHORT STRING
LONG CSTRING
ULONG PSTRING
SREAL DATE
REAL TIME
BFLOAT4 GROUP
BFLOAT8

File Specifications/Maximums
File Size: 4,294,967,295 bytes
Records per File: 4,294,967,295 bytes
Record Size: 65,520 bytes
Field Size: 65,520 bytes
Fields per Record: 65,520 bytes
Keys/Indexes per File: n/a
Key Size: n/a
Memo fields per File: 0
Memo Field Size: n/a
Open Data Files: Operating system dependent

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Driver Strings and SEND functions

Driver strings (the second parameter of the DRIVER attribute) are all
preceded by a forward slash character (/). SEND function commands
can take two formats—one with an equal sign modifies a switch setting
and return the value of the previous switch setting; the other format
(without an equal sign) returns the value of the switch.

Driver strings are sent to the file driver when the file is opened. The
SEND function sends a command to modify a setting after the file is
open. Some driver strings have no effect after the file is open, so the
SEND function syntax to modify the setting is not listed. However, the
SEND function syntax to return the value of the switch is listed for all
driver strings.

/FILEBUFFERS=n Specifies a value for the number of buffers used
to read and write to the file.

The Basic driver allocates internal buffers of 512
bytes, or the size of your record, whichever is
larger, to store the retrieved data. The default
number of buffers is 2 for files opened denying
write access to other users, and 1 for all other
open modes. Use the optional driver string to
increase the buffers should you find access to
records is slow.

SEND(file, ‘FILEBUFFERS’)
Returns the number of buffers in the form of a
STRING.

/ENDOFRECORD=n,<m> Specifies the end of record delimiter.

n represents the number of characters of the end-
of-record separator.

m represents the ASCII code(s) for the end-of-
record characters, separated by commas. The
default is 2,13,10 indicating 2 characters mark
the end-of-record, namely, carriage return (13)
and line feed (10).

SEND(file,’ENDOFRECORD’)
Returns the end of record delimiter in the form
of a STRING.

APPENDIX B DATABASE DRIVERS—BASIC FILES

Tip: Mainframes frequently use a carriage return to
delimit records. You can use /ENDOFRECORD to
read these files .

/QUICKSCAN=on|off
SEND(file,’QUICKSCAN=ON|OFF’)

Specifies buffered access behavior.

The Basic driver reads a buffer at a time (not a
record), allowing for fast access. In a multi-user
environment these buffers are not 100%
trustworthy for subsequent access, because
another user may change the database between
accesses. As a safeguard, the driver rereads the
buffers before each record access. To disable the
reread, set QUICKSCAN to ON. The default is
ON for files opened denying write access to
other users, and OFF for all other open modes.

SEND(file,’QUICKSCAN’)
Returns the Quickscan setting (ON or OFF) in
the form of a STRING(3).

/FIELDDELIMITER=n,<m> Specifies the end-of-field separator.

n represents the number of characters that make
up the end-of-field separator.

m represents the ASCII code(s) for the end-of-
field characters, separated by commas. The
default is 1,44, which indicates the “comma”
character.

SEND(file,’FIELDDELIMITER’)
Returns the value of the field delimiter in the
form of a STRING.

/COMMA=n Specifies a single character end-of-field
separator. n represents the ASCII code for the
end-of-field character. The default is 44, which
is equivalent to “/FIELDDELIMITER=1,44.”

SEND(file,’COMMA’) Returns the ASCII code for the single character
end-of-field delimiter in the form of a STRING.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Tip: TAB-delimited values are a common format compatible with
the Windows clipboard. Using the BASIC file driver string
/COMMA=9 allows you to read Windows clipboard files

/QUOTE=n Specifies a single character string delimiter.n
represents the ASCII code. The default is 34, the
ASCII value for the quotation mark character.

SEND(file,’QUOTE’) Returns the ASCII code value of the single
character string delimiter in the form of a
STRING.

/ALWAYSQUOTE=on|off
For compatibility with Basic format data files
created by products which do not place string
values in quotes, set ALWAYSQUOTE to off.

When the contents of a string field includes the
comma or quote character(s), and
ALWAYSQUOTE is off, the Basic driver
automatically places quotes around the string
when writing to file. This also applies to
delimiter characters specified with
FIELDDELIMITER, or COMMA. For example,
with the defaults in use and ALWAYSQUOTE
off, a STRING field containing the value 1313
Mockingbird Lane, Apt. 33 is automatically
stored as: "1313 Mockingbird Lane, Apt. 33"

SEND(file,’ALWAYSQUOTE’)
Returns the ALWAYSQUOTE setting (ON or
OFF) in the form of a STRING(3).

APPENDIX B DATABASE DRIVERS—BASIC FILES

Unsupported Functions and Attributes

Memos: NOMEMO()

Transaction Processing: COMMIT(), LOGOUT(), ROLLBACK()

Key Processing: BUILD(key), BUILD(index)
GET(file,key), GET(key,keypointer)
RESET(key,string)
SET(file,key), SET(key), SET(key,key),
SET(key,keypointer), SET(key,key,filepointer)
DUPLICATE()
POINTER(key)
POSITION(key)
RECORDS(key)
REGET(key,string)

Record Locking: HOLD(), RELEASE()

File Buffering: STREAM()

File Information: RECORDS(file)

Sequential Processing: PREVIOUS(), BOF(), SKIP()

File Manipulation: BUILD(), DELETE(), PACK(), WATCH(), REGET()

Miscellaneous

The following demonstrates how to use the driver strings to create two
popular file formats:

◆ Microsoft Word for Windows Mail Merge:
/ALWAYSQUOTE=OFF
/FIELDDELIMITER=2,13,7
/ENDOFRECORD=4,13,7,13,7

◆ TAB delimited format:
/COMMA=9

❖ POSITION(file) returns a STRING(4).

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

BTRIEVE FILES

This file driver reads and writes Btrieve files, using low-level direct
access.

Under Clarion for Windows, the Btrieve file driver is implemented by
using .DLLs and an .EXE supplied by Btrieve Technologies, Inc. (BTI).
For an application to use a Btrieve file driver, the following BTI files
must accompany the executable:

16-bit
WBTR32.EXE
WBTRLOCL.DLL
WBTRCALL.DLL
WBTRVRES.DLL

32-bit
Filenames were not available at press time.
Contact BTI for more information.

LICENSE WARNING: A registered Clarion for Windows owner
cannot redistribute the above BTI files outside of his/her
organization without a license from BTI. In order to obtain a
license, please contact:

Btrieve Technologies, Inc.
5918 West Courtyard Drive, Suite 400
Austin, Texas 78730
Phone: (512)794-1719

For Client/Server-based Btrieve, Netware Btrieve is a server-based
version of Btrieve that runs on a Novell server. The Btrieve requester
program— BREQUEST.EXE must be loaded at each workstation before
Windows is started.

A single file normally holds the data and all keys. Data filenames default
to a *.DAT file extension. By default, the driver stores memos in a
separate file, or optionally in the data file itself, given the appropriate
driver string.

KEYs are dynamic, and automatically update when the data file changes.

INDEXes are stored separately from data files. INDEX files receive a
temporary file name, and are deleted when the program terminates
normally. INDEXes are static—they are not automatically updated when
the data file changes. The BUILD statement creates or updates index
files.

APPENDIX B DATABASE DRIVERS—BTRIEVE FILES

The Btrieve file format stores minimal file structure information in the
file. The driver validates your description against the information in the
file. It is possible to successfully open a Btrieve file that has key
definitions that do not exactly match your definition. You must make
certain that your file and key definitions accurately match the Btrieve
file.

Files: CWBTRV16.LIB Windows Export Library (16-bit)

CWBTRV32.LIB Windows Export Library (32-bit)

CLBTRV16.LIB Windows Static Link Library (16-bit)

CLBTRV32.LIB Windows Static Link Library (32-bit)

CWBTRV16.DLL Windows Dynamic Link Library (16-bit)

CWBTRV32.DLL Windows Dynamic Link Library (32-bit)

An Owner Name is similar to a password. An encrypted Btrieve file uses
the owner name as the encryption key.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Data Types
Clarion data type Btrieve data type
BYTE STRING (1 byte)
SHORT INTEGER (2 bytes)
LONG INTEGER (4 bytes)
SREAL FLOAT (4 bytes)
REAL FLOAT (8 bytes)
BFLOAT4 BFLOAT (4 bytes)
BFLOAT8 BFLOAT (8 bytes)
PDECIMAL DECIMAL
STRING STRING
CSTRING ZSTRING
PSTRING LSTRING
DATE DATE
TIME TIME
USHORT UNSIGNED BINARY (2 bytes)
ULONG UNSIGNED BINARY (4 bytes)
MEMO STRING,LVAR or NOTE (see below)
BYTE,NAME(‘LOGICAL’) LOGICAL*
USHORT,NAME(‘LOGICAL’) LOGICAL*
PDECIMAL,NAME(‘MONEY’) MONEY*
STRING(@N0n-),NAME(‘STS’) SIGNED TRAILING SEPERATE*
DECIMAL

Notes:

❖ You can store Clarion DECIMAL types in a Btrieve file. However,
you cannot build a key or index using the field.

❖ If you want to create a file with LOGICAL or MONEY field types,
you must specify an external name of LOGICAL or MONEY,
respectively. If you are accessing an existing file, the NAME
attribute is not required.

LOGICAL may be declared as a BYTE or USHORT, depending on
whether it is a one or two byte LOGICAL:

LogicalField1 BYTE !One byte LOGICAL
LogicalField2 USHORT !Two byte LOGICAL

MONEY may be declared as a PDECIMAL(x,2), where x is the total
number of digits to be stored:

MoneyField PDECIMAL(7,2) !Store up to 99999.99

❖ Btrieve NUMERIC fields are not fully supported by the driver.
Btrieve NUMERIC is stored as a string with the last character
holding a digit and an implied sign.. The possible values for this last
character are:

 1 2 3 4 5 6 7 8 9 0
Positive: A B C D E F G H I {
Negative: J K L M N O P Q R }

To access a NUMERIC field you must define a STRING(@N0x), where
x is one less than the digits in the NUMERIC, and a STRING(1) to
hold the sign indicator. The Btrieve driver does not maintain this

APPENDIX B DATABASE DRIVERS—BTRIEVE FILES

sign field, the application must be written to directly handle it.

For example to access a NUMERIC(7) you would have:
NumericGroup GROUP !Store -999999 to 999999
Number STRING(@N06) !Numbers
Sign STRING(1) !Sign indicator

END

File Specifications/Maximums:
File Size : 4,000,000,000 bytes
Records per File : Limited by the size of the file
Record Size

Client-based : 65,520 bytes variable length
Server based : 54K variable length

Field Size : 65,520 bytes
Fields per Record : 65,520 bytes
Keys/Indexes per File: 24 with NLM5

256 with NLM6.
Client Btrieve v6.15
Page Size Max Key Segments
512 8
1,024 23
1,536 24
2,048 54
4,096 119
This is the total number of
components. If you have a
multicomponent key built from three
fields, this counts as three
indexes when counting the number of
allowed indexes.

Key Size : 255 bytes
Memo fields per File: System memory dependent
Memo field size : 65,520 bytes
Open Files : Operating system dependent

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Driver Strings and SEND functions

Driver strings (the second parameter of the DRIVER attribute) are all
preceded by a forward slash character (/). SEND function commands
can take two formats—one with an equal sign modifies a switch setting
and return the value of the previous switch setting; the other format
(without an equal sign) returns the value of the switch.

Driver strings are sent to the file driver when the file is opened. The
SEND function sends a command to modify a setting after the file is
open. Some driver strings have no effect after the file is open, so the
SEND function syntax to modify the setting is not listed. However, the
SEND function to return the value of the switch is valid for all driver
strings.

/MEMO=SINGLE To access existing Btrieve files created with the
Btrieve LEM from Clarion 2.1, or files with
variable length records set MEMO to SINGLE.

/MEMO=LVAR To access a file with variable length records, use
a SINGLE style MEMO whose size equals the
maximum size of the variable length component
of the record. To add/put records to this style file
with binary data stored in the variable length
section, use the ADD(file,length),
APPEND(file,length) and PUT(file,pos,length)
functions. The driver ignores the pos parameter
in the PUT function, but initialize it to 0 (zero)
for future compatibility. The ADD, APPEND or
PUT functions will remove all trailing spaces
for text memos and NULL characters for binary
memos before storing the record.

/MEMO=NOTE,<delimiter> To access Xtrieve data files that have data type
of Note or LVar, set the driver string to NOTE
and LVAR respectively. With the NOTE data
type, specify the end-of-field delimiter. Specify
the ASCII value for the delimiter. NOTE and
LVAR memos do not require the use of the size
variants of ADD, APPEND and PUT, when
storing records. The end of record marker is not
necessary for a NOTE style memo. The driver
automatically adds the end of record marker
before storing the record and removes it before
putting the memo data into the memo buffer.

APPENDIX B DATABASE DRIVERS—BTRIEVE FILES

As an example, “/MEMO=NOTE,141” indicates
a file with an Xtrieve Notes field using CR/LF
as the delimiter. For more information on the
Xtrieve data types refer to the documentation
supplied by Novell.

SEND(file,’MEMO’) Returns the MEMO setting:
NORMAL,NOTE,LVAR or SINGLE

/PAGESIZE=<size> Optionally sets the Btrieve Page size at file
creation time. The keyword must be upper case.
It must always be a multiple of 512, with a
maximum of 4096. Larger page sizes usually
result in more efficient disk storage. Do not add
spaces before or after the equal sign.

SEND(file,’PAGESIZE’)
Returns the page size in the form of a STRING.

/ALLOWREAD=[ON|OFF] By default, a Btrieve file created with an owner
name may be accessed only in read-only mode
when the owner name is not known. To prevent
all access to the file without the owner name, set
ALLOWREAD to OFF.

SEND(file,’ALLOWREAD’)
Returns the ALLOWREAD setting (ON or OFF)
in the form of a STRING(3).

/COMPRESS=[ON|OFF] Btrieve allows you to compress the data before
storage. This allows for a smaller storage
requirement, but reduces performance. When
COMPRESS is ON, CREATE creates a
compressed Btrieve file.

SEND(file,’COMPRESS’)
Returns the COMPRESS setting (ON or OFF)
in the form of a STRING(3).

/PREALLOCATE=n When creating a Btrieve file, you can preallocate
n pages of disk space for the file. The default is
zero.

SEND(file,’PREALLOCATE’)
Returns the number of pages of allocated disk
space in the form of a STRING.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

/FREESPACE=[0|10|20|30]
Specifies the percentage of free space to
maintain on variable length pages. The default is
zero.

SEND(file,’FREESPACE’) Returns the percentage of free space to maintain
on variable length pages in the form of a
STRING.

/ACS=file_name When creating a Btrieve file you can specify an
alternate collating sequence that STRING keys
will be sorted by. This sorting sequence is
normally obtained from the sort sequence you
define in the INI file for your program.
However, Btrieve supplies files for doing case
insensitive sorts. To create your file using these
sort sequences you specify the name of the sort
file in the driver string.

For example. To use the alternate collating
sequence file UPPER.ALT you would specify:

AFile FILE,DRIVER(‘BTRIEVE’,’/ACS=UPPER.ALT’),CREATE

/APPENDBUFFER=size
SEND(file,’APPENDBUFFER=size’)

By default APPEND adds records to the file one
at a time. To get better performance over a
network you can tell the driver to build up a
buffer of records then send all of them to Btrieve
at once. This is done using
SEND(file,’APPENDBUFFER=size’) where
size is the number of records you want to
allocate for the buffer. The maximum value of
size of the buffer.

SEND(file,’APPENDBUFFER’)
Returns the number of records that will fit in the
buffer.

/BALANCEKEYS=[ON|OFF]’)
When creating a Btrieve file, you can use this
driver string to tell Btrieve that Btrieve that all
keys associated with the file must be stored in a
balances btree. This saves disk space, but will
slow down file adds, deletes and updates where
key values change.

APPENDIX B DATABASE DRIVERS—BTRIEVE FILES

SEND(file,’BALANCEKEYS’)
Returns the BALANCEKEYS setting (ON or
OFF) in the form of a STRING(3).

SEND(file,’FREEAPPENDBUFFER’)
Frees up the memory used by the append buffer
allocated by a call to
SEND(file,APPENDBUFFER=size). Returns
the number of records that fitted in the old
buffer.

/LACS= With Btrieve v6.15 Btrieve added the feature of
Local Alternate Collating Sequences. This
allows your string key to sort based on the
country code for the machine running your
program. To use this feature you put ‘/LACS=’
in your driver string.

/LACS=country_ID,code_page
With Btrieve v6.15 Btrieve added the feature of
User-Defined Alternate Collating Sequences.
This allows your string key to sort based on the
DOS country code and code page for a
particular country. To use this feature you put ‘/
LACS=country_id,codepage’ in your driver
string. Note that there must be no spaces
surrounding the comma.

SEND(file,’LACS’) Returns country_ID,code_page or the string ‘,’
(if using machine-dependent LACS).

/TRUNCATE=[ON|OFF] When creating a Btrieve file, you can use this
driver string to tell Btrieve to truncate trailing
spaces. This forces the record to be stored as a
variable length records.

SEND(file,’TRUNCATE’)
Returns the TRUNCATE setting (ON or OFF) in
the form of a STRING(3).

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Unsupported/Modified Functions and Attributes

❖ Key Attribute: NOCASE

NLM 5 does not support case insensitive indexing. When necessary,
you must supply an alternate collating sequence which implements
case insensitive sorting.

Btrieve supports an alternate collating sequence. However, NLM 6
does not support both NOCASE and an alternate collating sequence.
If you specify both, the NOCASE attribute takes precedence. No
error is returned from the SEND function.

❖ Buffering Control: STREAM, FLUSH

There is no buffering control within the Btrieve driver.

❖ File Locking: LOCK()

Btrieve does not support file locking. The driver does not return any
error if you call it. If you require file locking, use LOGOUT.

❖ Record Access: GET(file, fileptr, len)

❖ File information: BYTES()

❖ File updates: PUT(file, fileptr)

❖ SET(file, filepointer), SET(key, keypointer)

If a file or key pointer has a value of zero, or any other value that
does not exist in the file, the driver ignores the pointer parameter.
Processing is set to either file or key order, and the record pointer is
set to the first element.

❖ SET(key, key, filepointer)

If the filepointer has a value of zero, or any other value that does not
exist in the file, processing starts at the first key value whose
position is greater than (or less than for PREVIOUS) the filepointer.
Not passing a valid pointer is inefficient.

❖ EOF(file), BOF(file)

These functions are supported, but not recommended. They cause
more disk I/O than ERRORCODE(). Btrieve returns eof when
reading past the last record. This requires the driver must read the
next record, then the next to see if it’s at the end of file, then goes
back to the record you want.

❖ ADD(file), PUT(file)

APPENDIX B DATABASE DRIVERS—BTRIEVE FILES

When using the LVAR and NOTE memo type, make certain that the
memo has the appropriate structure. If the structure is incorrect and
the driver calculates a length greater than the maximum memo size
defined for that file, these functions fail and set errorcode to 57 -
Invalid Memo File.***

❖ DELETE(file) when stepping through in record order

Tip: Btrieve’s DELETE destroys positioning information when
processing in file order. The driver attempts to reposition to
the appropriate record. This is not always possible and may
require the driver to read from the start of the file. Using key
order processing avoids this possible slow down.

❖ LOGOUT()

Btrieve does not allow you to logout only certain files. When you
issue a LOGOUT() call, all Btrieve files accessed during the
transaction are logged out. This means the following code is illegal
(as you cannot close a logged-out file:

 LOGOUT(1,file1)
 OPEN(file2)
 CLOSE(file2)

❖ APPEND()

Btrieve does not support non-key updates. To emulate APPEND()
behavior, the driver drops all indexes possible when APPEND() is
first called. Calling BUILD() immediately after appending records
rebuilds the dropped key fields.

❖ BUILD()

If used after an APPEND(), but before a file is closed, this adds the
keys dropped by APPEND(). In all other cases BUILD() rebuilds the
file and keys. If you only want to rebuild keys, doing a BUILD(key)
for each key is faster than BUILD(file).

❖ BUILD(DynamicIndex, expression,filter)

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Miscellaneous

❖ The driver stores records less than 4K as fixed length. It stores
records greater than 4K as variable length. The minimum record
length is 4 bytes. One record can be held in each open file by each
user.

❖ The driver ignores any NAME attribute on a MEMO field. MEMO
fields can reside either in a separate file, or in the data file if the
driver string MEMO is set to SINGLE, LVAR or NOTE. If the driver
string MEMO is not set, the separate MEMO file name is “MEM,”
preceded by the first five characters of the file’s label, plus the file
extension “DAT.” Setting the driver string MEMO restricts you to
one memo field per file.

❖ Btrieve allows you to open a file in five different formats:
NORMAL, ACCELERATED, READ-ONLY, VERIFY or
EXCLUSIVE. The equivalent Clarion OPEN() states are:
Btrieve State Clarion OPEN/SHARE access mode
ACCELERATED Read/Write with FCB compatibility mode (2H)
READ-ONLY Read Only (0H,10H,20H,30H,40H)
VERIFY Write Only with FCB compatibility mode (1H)
EXCLUSIVE Write Only with any Deny flag (11H,21H,31H,41H);

Read/Write with Deny All, Read or Write (12H,22H,32H)
NORMAL Read/Write with Deny None (42H)

❖ Btrieve allows a file to have a specified owner. See the driver string /
READONLY for details on setting this flag. The file may also be
encrypted. This is set with the ENCRYPT attribute. A file can only
be encrypted when an owner name is supplied.

❖ Btrieve uses an unsigned long for its internal record pointer; negative
values are stripped of their sign. We recommend the ULONG data
type for your record pointer.

❖ Calculating Page Size:

To determine the physical record length, add 8 bytes for each KEY
that allows duplicates. Add 4 bytes if the file allows variable record
lengths. Finally, allow 6 bytes for overhead per page.

For example: If the record size is 300 bytes and the file has three
KEYs that allow Duplicates, the total record size is:

300 record size

x 24 overhead for three KEYs with the DUP attribute

= 324 physical record length

A page size of 512 would only hold one such record, and 182 bytes
per page would go unused (512 - 6 - 324). If the page size were

APPENDIX B DATABASE DRIVERS—BTRIEVE FILES

1024, three records could be stored per page and only 46 bytes
would go unused (1024 - 6 - (324 * 3)).

You must load BTRIEVE.EXE with a page size equal to or greater
than the largest page size of any file that you will be accessing.

When defining a file, the key definition does not need to exactly
match the underlying file. For example, you can have a physical file
with a single component STRING(20). You can define this as a key
with two string components with a total length of 20. The rule is that
the data types must match and the total size must match. However, if
your Clarion definition does not exactly match the underlying file,
the driver cannot optimize APPEND() or BUILD() statements.

❖ A Key’s NAME attribute can add additional functionality.

KEY,NAME(‘MODIFIABLE=true|false’)
Btrieve allows you to create a key that can not be changed once
created. To use this feature you can use the name attribute on the key
to set MODIFIABLE to FALSE. It defaults to TRUE.

KEY,NAME(‘ANYNULL’)
Btrieve allows you to create a key that will not include a record if
any key components are null. To create such a key you specify
ANYNULL in the key name.

For example, to create a key that is non modifiable and excludes keys if
any component is null:

 Key1 KEY(+pre:field1,-pre:field2),NAME(‘ANYNULL MODIFIABLE=FALSE’)

KEY,NAME(‘REPEATINGDUPLICATE’)
By default Btrieve version 6 stores a reference to only the first record
in a series of duplicate records in a key. The other occurrences of the
duplicate key value are obtained by following a link list stored at the
record. To create an index where all duplicate records are stored in
the key you use the NAME(‘REPEATINGDUPLICATE’). This
produces larger keys, but random access to duplicate records is
faster. (This feature is only available for version 6 files.)

❖ POSITION(file) returns a STRING(4).

❖ POSITION(key) returns a STRING the size of the key fields + 4
bytes.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

CLARION FILES

The Clarion file driver is compatible with the file system used by
Clarion Database Developer 3.0 and Clarion Professional Developer.

Keys and Indexes exist as separate files from the data file. Keys are
dynamic—they are automatically updated as the data file changes. The
default file extension for a key file is *.K##. Indexes are static—they do
not automatically update, but instead require the BUILD statement for
updating.

The driver stores records as fixed length. It stores memo fields in a
separate file. The memo file defaults to the first eight characters of the
File Label plus an extension of .MEM.

Files: CWC2116.LIB Windows Export Library (16-bit)

CWC2132.LIB Windows Export Library (32-bit)

CLC2116.LIB Windows Static Link Library (16-bit)

CLC2132.LIB Windows Static Link Library (32-bit)

CWC2116.DLL Windows Dynamic Link Library (16-bit)

CWC2132.DLL Windows Dynamic Link Library (32-bit)

Tip: By avoiding the ASCII-only file formats of many other popular
PC database application development systems, the Clarion file
format provides a more secure means of storing data.

APPENDIX B DATABASE DRIVERS—CLARION FILES

Data Types

BYTE DECIMAL

SHORT STRING (255 byte maximum)

LONG MEMO

REAL GROUP

Maximum File Specifications:

File Size: limited only by disk space

Records per File : 4,294,967,295

Record Size: 65,520 bytes

Field Size : 65,520 bytes

Fields per Record: 65,520 bytes

Keys/Indexes per File: 251

Key Size : 245 bytes

Memo fields per File : 1

Memo Field Size: 65,520 bytes

Open Data Files: Operating system dependent

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Driver Strings and SEND functions

Driver strings (the second parameter of the DRIVER attribute) are all
preceded by a forward slash character (/). SEND function commands
can take two formats—one with an equal sign modifies a switch setting
and return the value of the previous switch setting; the other format
(without an equal sign) returns the value of the switch.

Driver strings are sent to the file driver when the file is opened. The
SEND function sends a command to modify a setting after the file is
open. Some driver strings have no effect after the file is open, so the
SEND function syntax to modify the setting is not listed. However, the
SEND function syntax to return the value of the switch is listed for all
driver strings.

RECOVER may not be used as a DRIVER string—you may only use it
with the SEND function.

SEND(file,’RECOVER=n’)
The RECOVER string, when n is greater than 0,
UNLOCKs a data file, or RELEASEs a held
record in order to recover from a system crash.

n represents the number os seconds to wait
before invoking the recovery process. When n is
equal to 1, the recovery process is invoked
immediately. When n is equal to 0, the recovery
process is disarmed.

The SEND function returns a blank string.

To RELEASE a held record, you must read that
record into memory. If there are multiple held
records, loop through the entire file after
SENDing the RECOVER= message to the
driver.

SEND(file,’IGNORESTATUS=on|off’)
/IGNORESTATUS=on|off When set on, the driver does not skip deleted

records when accessing the file with GET(),
NEXT(), and PREVIOUS() in file order. It also
enables a PUT() on a deleted or held record. /
IGNORESTATUS requires opening the file in
exclusive mode.

SEND(file,’IGNORESTATUS’)
Returns the IGNORESTATUS setting (ON or
OFF) in the form of a STRING(3).

APPENDIX B DATABASE DRIVERS—CLARION FILES

SEND(file,’DELETED’)
For use only with the SEND command, when /
IGNORESTATUS is on. Reports the status of
the loaded record. If deleted, the return string is
“ON;” if not, “OFF.”

SEND(file,’HELD’) For use only with the SEND command, when /
IGNORESTATUS is on. Reports the status of
the loaded record. If held, the return string is
“ON;” if not, “OFF.”

Miscellaneous

❖ POSITION(file) returns a STRING(4).

❖ POSITION(key) returns a STRING the size of the key fields + 4
bytes.

Unsupported Functions and Attributes

Record Access:GET(file, fileptr, len), ADD(file, len), APPEND(file,
len)

The driver does not support variable length records.

File updates: PUT(file, fileptr, len)

The driver does not support variable length records.

EOF(file), BOF(file)

Although the driver supports these functions, we do not recommend
their use. These functions must physically access the files in order to
operate, adding considerable overhead. Instead, test the value
returned by ERRORCODE() after each sequential access. NEXT() or
PREVIOUS() post Error 33 (Record Not Available) if an attempt is
made to access a record beyond the end or beginning of the file.

BUILD(DynamicIndex, expression,filter)

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

CLIPPER FILES

The Clipper file driver is compatible with Clipper Summer ‘87 and
Clipper 5.0. The default data file extension is *.DBF.

Keys and Indexes exist as separate files from the data file. Keys are
dynamic—they automatically update as the data file changes. Indexes are
static—they do not automatically update, but instead require the BUILD
statement for updating. The default file extension for the index file is
*.NTX.

The driver stores records as fixed length. It stores memo fields in a
separate file. The memo file name takes the first eight characters of the
File Label plus an extension of .DBT.

Files: CWCLIP16.LIB Windows Export Library (16-bit)

CWCLIP32.LIB Windows Export Library (32-bit)

CLCLIP16.LIB Windows Static Link Library (16-bit)

CLCLIP32.LIB Windows Static Link Library (32-bit)

CWCLIP16.DLL Windows Dynamic Link Library (16-bit)

CWCLIP32.DLL Windows Dynamic Link Library (32-bit)

Tip: As a popular xBase database application development
system, Clipper provides a common file format for many
installed business applications and their data files. Use the
Clipper driver to access these files in their native format.

Data Types

The xBase file format stores all data as ASCII strings. You may either
specify STRING types with declared pictures for each field, or specify
native Clarion data types, which the driver converts automatically.

Clipper data type Clarion data type STRING w/ picture
Date DATE STRING(@D12)
*Numeric REAL STRING(@N-_p.d)
*Logical BYTE STRING(1)
Character STRING STRING
*Memo MEMO MEMO

If your application reads and writes to existing files, a pictured STRING
will suffice. However, if your application creates a Clipper file, you may
require additional information for these Clipper types:

APPENDIX B DATABASE DRIVERS—CLIPPER FILES

❖ To create a numeric field in the Data Dictionary, choose the REAL
data type. In the External Name attribute, specify
‘NumericFieldName=N(Precision,DecimalPlaces)’ where
NumericFieldName is the name of the field, Precision is the
precision of the field and DecimalPlaces is the number of decimal
places.

If you’re hand coding a native Clarion data type, add the NAME
attribute using the same syntax. If you’re hand coding a STRING
with picture, STRING(@N-_9.2), NAME(‘Number’), where
Number is the field name.

❖ To create a logical field, using the data dictionary, choose the BYTE
data type. There are no special steps; however, see the miscellaneous
section for tips on reading the data from the field.

If you’re hand coding a STRING with picture, add the NAME
attribute: STRING(1), NAME(‘LogFld = L’) .

❖ To create a date field, using the data dictionary, choose the DATE
data type, rather than LONG, which you usually use for the
TopSpeed or Clarion file formats.

❖ MEMO field declarations require the a pointer field in the file’s
record structure. Declare the pointer field as a STRING(10) or a
LONG. This field will be stored in the .DBF file containing the
offset of the memo in the .DBT file. The MEMO declaration must
have a NAME() attribute naming the pointer field. An example file
declaration follows:

File FILE, DRIVER(‘Clipper’)
Memo1 MEMO(200),NAME(‘Notes’)
Memo2 MEMO(200),NAME(‘Text’)
Rec RECORD
Mem1Ptr LONG,NAME(‘Notes’)
Mem2Ptr STRING(10),NAME(‘Text’)
 END

END

File Specifications/Maximums
File Size: 2,000,000,000 bytes
Records per File: 1,000,000,000 bytes
Record Size: 4,000 bytes (Clipper ‘87)

8,192 bytes (Clipper 5.0)
Field Size
 Character: 254 bytes (Clipper ‘87)

2048 bytes (Clipper 5.0)
 Date: 8 bytes
 Logical: 1 byte
 Numeric: 20 bytes including decimal point
 Memo: 65,520 bytes (see note)
Fields per Record: 255
Keys/Indexes per File: No Limit
Key Sizes
 Character: 100 bytes
 Numeric, Date: 8 bytes

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Memo fields per File: Dependent on available memory
Open Files: Operating system dependent

Driver Strings and SEND functions

Driver strings (the second parameter of the DRIVER attribute) are all
preceded by a forward slash character (/). SEND function commands
can take two formats—one with an equal sign modifies a switch setting
and return the value of the previous switch setting; the other format
(without an equal sign) returns the value of the switch.

Driver strings are sent to the file driver when the file is opened. The
SEND function sends a command to modify a setting after the file is
open. Some driver strings have no effect after the file is open, so the
SEND function syntax to modify the setting is not listed. However, the
SEND function syntax to return the value of the switch is listed for all
driver strings.

/BUFFERS=n Specify a value for the number of buffers used
to read and write to the file.

The Clipper driver utilizes DOS buffering. The
default is three buffers of 1024 bytes each.
Increasing the number of buffers will not
increase performance when a file is shared by
multiple users.

SEND(file,’BUFFERS’)
Returns the number of buffers in the form of a
STRING.

/RECOVER
SEND(file,’RECOVER’)

Equivalent to the Xbase RECALL command,
which recovers records marked for deletion.
When using the Clipper driver, the DELETE
statement flags a record as “inactive.” The driver
does not remove the record until the PACK or
BUILD command is executed.

/RECOVER is evaluated each time you open the
file if you add the driver string to the data
dictionary. When the driver recovers the records
previously marked for deletion, you must
manually rebuild keys and indexes with the
BUILD statement.

SEND(file,’IGNORESTATUS=on|off’)

APPENDIX B DATABASE DRIVERS—CLIPPER FILES

/IGNORESTATUS=on|off When set on, the driver does not skip deleted
records when accessing the file with GET,
NEXT, and PREVIOUS in file order. It also
enables a PUT on a deleted or held record. /
IGNORESTATUS requires opening the file in
exclusive mode.

SEND(file,’IGNORESTATUS’)
Returns the IGNORESTATUS setting (ON or
OFF) in the form of a STRING(3).

SEND(file,’DELETED’)
For use only with the SEND command, when
IGNORESTATUS is on. Reports the status of
the current record. If deleted, the return string is
“ON;” if not, “OFF.”

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Unsupported/Modified Functions & Attributes

Memos: BINARY

Clipper supports only text memos.

Keys: NOCASE, OPT

File: ENCRYPT, OWNER, RECLAIM

The Clipper driver cannot read encrypted Clipper files. To reclaim
space from deleted records, call PACK(file).

Transaction Processing: COMMIT(), LOGOUT(), ROLLBACK()

The Clipper driver does not support any transaction logging.

Record Access: GET(file, fileptr, len), ADD(file, len)

Clipper does not support variable length records

File updates: PUT(file, fileptr, len)

Clipper does not support variable length records

EOF(file), BOF(file)

Although the driver supports these functions, we do not recommend
their use. They must physically access the files and add overhead.
Instead, test the value returned by ERRORCODE() after each
sequential access. NEXT or PREVIOUS post Error 33 (Record Not
Available) if an attempt is made to access a record beyond the end or
beginning of the file.

ADD(file) vs. APPEND(file)

The ADD statement tests for duplicate keys before modifying the
data file or its associated KEY files. Consequently it is slower than
APPEND which performs no checks and does not update KEYs.
When adding large amounts of data to a database use
APPEND...BUILD in preference to ADD.

BUILD(key, str)

When building dynamic indexes, the str component may take one of
two forms:

BUILD(DynNdx, '+Pre:FLD1, -Pre:FLD2')

This form specifies the names of the fields on which to build the
index. The field names must appear as specified in the fields’
NAME() attribute if supplied, or must be the label name. A prefix

APPENDIX B DATABASE DRIVERS—CLIPPER FILES

may be used for compatibility with the Clarion conventions but is
ignored.

BUILD(DynNdx, 'T[Expression]')

This form specifies the type and Expression used to build an index,
see the miscellaneous section, below.

COPY(file, newname)

The COPY() command copies data and memo files using newname,
which may specify a new file name or directory. Key or index files
are copied if the newname is a subdirectory specification. To copy an
index file to a new file, use a special form of the copy command:

COPY(file,'<index>|<newname>')

This returns File Not Found if an invalid index is passed. The COPY
command assumes a default extension of ".NTX" for both the source
and the target file names if none is specified. If you require a file
name without an extension, terminate the name with a period. Given
the file structure:

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Clar2 FILE,CREATE,DRIVER('Clipper')
NumKey KEY(Num),DUP
StrKey KEY(Str1)
StrKey2 KEY(Str2)
AMemo MEMO(100), NAME('mem')
Record RECORD
Num STRING(@n-_9.2)
STR1 STRING(2)
STR2 STRING(2)
Mem STRING(10)

. .

The following commands copy this file definition to A:
COPY(Clar2,'A:\CLAR2')
COPY(Clar2,'StrKey|A:\STRKEY')
COPY(Clar2,'StrKey2|A:\STRKEY2')
COPY(Clar2,'NumKey|A:\NUMKEY')

After these calls, the following files would exist on drive A:
CLAR2.DBF, CLAR2.DBT, STRKEY.NTX, STRKEY2.NTX, and
NUMKEY.NTX.

DELETE(file)

When the driver deletes a record from a Clipper database, the record
is not physically removed, instead the driver marks it inactive.
Memo fields are not physically removed from the memo file,
however they cannot be retrieved if they refer to an inactive record.
Key values are removed from the index files. To remove records and
memo fields permanently, execute a PACK(file).

Tip: To those programmers familiar with Clipper, this driver
processes deleted records consistent with the way Clipper
processes them after the SET DELETED ON command is
issued. Records marked for deletion are ignored from
processing by executable code statements, but remain in the
data file.

HOLD(file), HOLD(file, timeout)

Clipper performs record locking by locking the entire record within
the data file. This prevents read access to other processes. Therefore
we recommend minimizing the amount of time for which a record is
held.

POINTER(file), POINTER(key)

There is no distinction between file pointers and key pointers; they
both contain the same value for any given record.

APPENDIX B DATABASE DRIVERS—CLIPPER FILES

RECORDS(file), RECORDS(key)

Under Clipper, the RECORDS() function reports the same number
of records for the data file and its keys and indexes. Usually there
will be no difference in the number of records unless the INDEX is
out of date. Because the DELETE statement does not physically
remove records, the number of records reported by the RECORDS()
function includes inactive records. Exercise care when using this
function.

RENAME(file, newname)

The RENAME command copies the data and memo files using
newname, which may specify a new file name or directory path. Key
and index files must be renamed using the same syntax as the COPY
command, above.

❖ POSITION(file) returns a STRING(12).

❖ POSITION(key) returns a STRING the size of the key fields + 4
bytes.

❖ BUILD(DynamicIndex, expression,filter) is not supported.

Miscellaneous

❖ Clipper allows a maximum of 254 characters to a character field.

❖ Clipper allows a logical field to accept one of nine possible values
(y,Y,n,N,t,T,f,F or a space character). The space character is neither
true nor false. When using a logical field from a preexisting database
in a logical expression, account for all these possibilities. Remember
that when a STRING field is used as an expression, it is true if it
contains any data and false if it is equal to zero or blank. Therefore,
to evaluate a Logical field’s truth, the expression should be true if
the field contains any of the “true” characters (T,t,Y, or y). For
example, if a Logical field were used to specify a product as taxable
or nontaxable, the expression to evaluate its truth would be:

(If Condition):
Taxable=‘T’ OR Taxable=‘t’ OR Taxable=‘Y’ OR Taxable=‘y’

❖ Clarion for Windows supports MEMO fields up to a maximum of
64K. If you have an existing file which includes a memo greater than
64K, you can use the file but not modify the large MEMOs.

❖ You can determine when your application encounters a large MEMO
by detecting when the memo pointer variable is non-blank, but the
memo appears to be blank. Error 47 (Bad Record Declaration) is
posted. If you attempt to update such a record, any modification to

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

the MEMO field is ignored.

❖ Clipper supports a maximum of 10 characters in a field name. If you
require more, use an External Name with 10 characters or less.

❖ Clipper supports the use of expressions to define keys. Within the
Dictionary Editor, you can place the expression in the external name
field in the Key Properties dialog. The general format of the external
name is :

 ‘FileName=T[Expression]’

Where FileName represents the name of the index file (which can
contain a path and file extension), and T represents the type of the
index. Valid types are: C = character, D = date, and N = numeric. If
the type is D or N then Expression can name only one field.

The expression may refer to multiple fields in the record, and
contain xBase functions. Square brackets must enclose the
expression. The currently supported functions appear below. If the
driver encounters an unsupported Xbase function in a preexisting
file, it posts error 76 ‘Invalid Index String’ when the file is opened
for keys and static indexes.

String expressions may use the ‘+’ operator to concatenate multiple
string arguments. Numeric expressions use the ‘+’ or ‘-’ operators
with their conventional meanings. The maximum length of a Clipper
expression is 250 characters.

Supported xBase commands

ALLTRIN(string) Removes leading and trailing spaces.

CTOD(string) Converts a string key to a date. The string
format mm/dd/yy; the result takes the form
‘yyyymmdd’. The yyyy element of the date
defaults to the twentieth century. An invalid date
results in a key containing blanks.

DELETED() Returns TRUE if the record is deleted.

DESCEND(string|date|numeric)
Inverts the argument, and creates descending
Clipper indexes.

DTOC(date) Converts a date key to string format ‘mm/dd/yy’

DTOS(date) Converts a date key to string format
‘yyyymmdd’

FIXED(float) Converts a float key to a numeric.

FLOAT(numeric) Converts a numeric key to a float.

APPENDIX B DATABASE DRIVERS—CLIPPER FILES

IIF(bool,val1,val2) Returns val1 if the first parameter is TRUE,
otherwise returns val2.

LEFT(string, n) Returns the leftmost n characters of the string
key as a string of length n.

RIGHT(string, n) Returns the rightmost n characters of the string
key as a string of length n.

RTRIM(string) Removes spaces from the right of a string.

STR(numeric [,length[, decimal places]])
converts a numeric to a string. The length of the
string and the number of decimal places are
optional. The default string length is 10, and the
number of decimal places is 0.

SUBSTR(string,offset,n)Returns a substring of the string key starting at
offset and of n characters in length.

TRIM(string) Removes spaces from the right of a string
(identical to RTRIM).

UPPER(string) Converts a string key to upper case.

VAL(string) Converts a string key to a numeric.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

dBASE III FILES

The dBase3 file driver is compatible with dBase III. The default data file
extension is *.DBF.

Keys and Indexes exist as separate files from the data file. Keys are
dynamic—they automatically update as the data file changes. Indexes are
static—they do not automatically update, but instead require the BUILD
statement for updating. The default file extension for the index file is
*.NDX.

The driver stores records as fixed length. It stores memo fields in a
separate file. The memo file name takes the first eight characters of the
File Label plus an extension of .DBT.

Files: CWDB316.LIB Windows Export Library (16-bit)

CWDB332.LIB Windows Export Library (32-bit)

CLDB316.LIB Windows Static Link Library (16-bit)

CLDB332.LIB Windows Static Link Library (32-bit)

CWDB316.DLL Windows Dynamic Link Library (16-bit)

CWDB332.DLL Windows Dynamic Link Library (32-bit)

Tip: dBase III is probably the most common file format for PC
database applications. These days, even desktop publishing
programs can import dBase III compatible .DBF files. If the
main task of your application is to export data files for other
applications about which you know nothing, you should
consider this format.

Data Types

The xBase file format stores all data as ASCII strings. You may either
specify STRING types with declared pictures for each field, or specify
native Clarion types, which the driver converts automatically.

dBase data type Clarion data type STRING w/ picture
Date DATE STRING(@D12)
*Numeric REAL STRING(@N-_p.d)
*Logical BYTE STRING(1)
Character STRING STRING
*Memo MEMO MEMO

APPENDIX B DATABASE DRIVERS—dB ASE III FILES

If your application reads and writes to existing files, a pictured STRING
will suffice. However, if your application creates a dBase III file, you
may require additional information for these dBase III types:

❖ To create a numeric field in the Data Dictionary, choose the REAL
data type. In the External Name attribute, specify
‘NumericFieldName=N(Precision,DecimalPlaces)’ where
NumericFieldName is the name of the field, Precision is the
precision of the field and DecimalPlaces is the number of decimal
places.

If you’re hand coding a native Clarion data type, add the NAME
attribute using the same syntax. If you’re hand coding a STRING
with picture, STRING(@N-_9.2), NAME(‘Number’), where
Number is the field name.

❖ To create a logical field, using the data dictionary, choose the BYTE
data type. There are no special steps; however, see the miscellaneous
section for tips on reading the data from the field.

If you’re hand coding a STRING with picture, add the NAME
attribute: STRING(1), NAME(‘LogFld = L’) .

❖ To create a date field, using the data dictionary, choose the DATE
data type, rather than LONG, which you usually use for the
TopSpeed or Clarion file formats.

❖ MEMO field declarations require the a pointer field in the file’s
record structure. Declare the pointer field as a STRING(10) or a
LONG. This field will be stored in the .DBF file containing the
offset of the memo in the .DBT file. The MEMO declaration must
have a NAME() attribute naming the pointer field. An example file
declaration follows:

File FILE, DRIVER(‘dBase3’)
Memo1 MEMO(200),NAME(‘Notes’)
Memo2 MEMO(200),NAME(‘Text’)
Rec RECORD
Mem1Ptr LONG,NAME(‘Notes’)
Mem2Ptr STRING(10),NAME(‘Text’)

END
END

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

File Specifications/Maximums
File Size: 2,000,000,000 bytes
Records per File: 1,000,000,000 bytes
Record Size: 4,000 bytes
Field Size
 Character: 254 bytes
 Date: 8 bytes
 Logical: 1 byte
 Numeric: 20 bytes including decimal point
 Memo: 64K (see note)
Fields per Record: 255
Keys/Indexes per File: No Limit
Key Sizes
 Character: 100 bytes
 Numeric, Date: 8 bytes
Memo fields per File: Dependent on available memory
Open Files: Operating system dependent

Driver Strings and SEND functions

Driver strings (the second parameter of the DRIVER attribute) are all
preceded by a forward slash character (/). SEND function commands
can take two formats—one with an equal sign modifies a switch setting
and return the value of the previous switch setting; the other format
(without an equal sign) returns the value of the switch.

Driver strings are sent to the file driver when the file is opened. The
SEND function sends a command to modify a setting after the file is
open. Some driver strings have no effect after the file is open, so the
SEND function syntax to modify the setting is not listed. However, the
SEND function syntax to return the value of the switch is listed for all
driver strings.

/BUFFERS=n Specify a value for the number of buffers used
to read and write to the file.

The dBase III driver utilizes DOS buffering. The
default is three buffers of 1024 bytes each.
Increasing the number of buffers will not
increase performance when a file is shared by
multiple users.

SEND(file,’BUFFERS’)
Returns the number of buffers in the form of a
STRING.

/RECOVER

APPENDIX B DATABASE DRIVERS—dB ASE III FILES

SEND(file,’RECOVER’)
Equivalent to the Xbase RECALL command,
which recovers records marked for deletion.
When using the dBase III driver, the DELETE
statement flags a record as “inactive.” The driver
does not remove the record until the PACK
command is executed.

/RECOVER is evaluated each time you open the
file if you add the driver string to the data
dictionary. When the driver recovers the records
previously marked for deletion, you must
manually rebuild keys and indexes with the
BUILD statement.

SEND(file,’IGNORESTATUS=on|off’)
/IGNORESTATUS=on|off

When set on, the driver does not skip deleted
records when accessing the file with GET,
NEXT, and PREVIOUS in file order. It also
enables a PUT on a deleted or held record. /
IGNORESTATUS requires opening the file in
exclusive mode.

SEND(file,’IGNORESTATUS’)
Returns the IGNORESTATUS setting (ON or
OFF) in the form of a STRING(3).

SEND(file,’DELETED’)
For use only with the SEND command, when
IGNORESTATUS is on. Reports the status of
the current record. If deleted, the return string is
“ON;” if not, “OFF.”

/OMNIS Specifies OMNIS file header and file delimiter
compatibility.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Unsupported/Modified Functions & Attributes

Memos: BINARY

dBase III supports only text memos.

Keys: DUP, NOCASE, OPT, ascending|descending

File: ENCRYPT, OWNER, RECLAIM

The dBase III driver cannot read encrypted dBase III files. To
reclaim space from deleted records, call PACK(file).

Transaction Processing: COMMIT(), LOGOUT(), ROLLBACK()

The dBase III driver does not support any transaction logging.

Record Access: GET(file, fileptr, len), ADD(file, len)

dBase III does not support variable length records

File updates: PUT(file, fileptr, len)

dBase III does not support variable length records

EOF(file), BOF(file)

Although the driver supports these functions, we do not recommend
their use. They must physically access the files and add overhead.
Instead, test the value returned by ERRORCODE() after each
sequential access. NEXT or PREVIOUS post Error 33 (Record Not
Available) if an attempt is made to access a record beyond the end or
beginning of the file.

ADD(file) vs. APPEND(file)

The ADD statement tests for duplicate keys before modifying the
data file or its associated KEY files. Consequently it is slower than
APPEND which performs no checks and does not update KEYs.
When adding large amounts of data to a database use
APPEND...BUILD in preference to ADD.

BUILD(key, str)

When building dynamic indexes, the str component may take one of
two forms:

BUILD(DynNdx, '+Pre:FLD1, -Pre:FLD2')

This form specifies the names of the fields on which to build the
index. The field names must appear as specified in the fields’
NAME() attribute if supplied, or must be the label name. A prefix

APPENDIX B DATABASE DRIVERS—dB ASE III FILES

may be used for compatibility with the Clarion conventions but is
ignored.

BUILD(DynNdx, 'T[Expression]')

This form specifies the type and Expression used to build an index,
see the miscellaneous section, below.

COPY(file, newname)

The COPY() command copies data and memo files using newname,
which may specify a new file name or directory. Key or index files
are copied if the newname is a subdirectory specification. To copy an
index file to a new file, use a special form of the copy command:

COPY(file,'<index>|<newname>')

This returns File Not Found if an invalid index is passed. The COPY
command assumes a default extension of ".NDX" for both the source
and the target file names if none is specified. If you require a file
name without an extension, terminate the name with a period. Given
the file structure:

Clar2 FILE,CREATE,DRIVER('dBase3')
NumKey KEY(Num),DUP
StrKey KEY(Str1)
StrKey2 KEY(Str2)
AMemo MEMO(100), NAME('mem')
Record RECORD
Num STRING(@n_9.2)
STR1 STRING(2)
STR2 STRING(2)
Mem STRING(10)

. .

The following commands copy this file definition to A:
COPY(Clar2,'A:\CLAR2')
COPY(Clar2,'StrKey|A:\STRKEY')
COPY(Clar2,'StrKey2|A:\STRKEY2')
COPY(Clar2,'NumKey|A:\NUMKEY')

After these calls, the following files would exist on drive A:
CLAR2.DBF, CLAR2.DBT, STRKEY.NDX, STRKEY2.NDX, and
NUMKEY.NDX.

DELETE(file)

When the driver deletes a record from a dBase III database, the
record is not physically removed, instead the driver marks it inactive.
Memo fields are not physically removed from the memo file,
however they cannot be retrieved if they refer to an inactive record.
Key values are removed from the index files. To remove records and
memo fields permanently, execute a PACK(file).

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Tip: To those programmers familiar with dBase III, this driver
processes deleted records consistent with the way dBase III
processes them after the SET DELETED ON command is
issued. Records marked for deletion are ignored from
processing by executable code statements, but remain in the
data file.

HOLD(file), HOLD(file, timeout)

dBase III performs record locking by locking the entire record
within the data file. This prevents read access to other processes.
Therefore we recommend minimizing the amount of time for which
a record is held.

POINTER(file), POINTER(key)

There is no distinction between file pointers and key pointers; they
both contain the same value for any given record.

RECORDS(file), RECORDS(key)

Under dBase III the RECORDS() function reports the same number
of records for the data file and its keys and indexes. Usually there
will be no difference in the number of records unless the INDEX is
out of date. Because the DELETE statement does not physically
remove records, the number of records reported by the RECORDS()
function includes inactive records. Exercise care when using this
function.

RENAME(file, newname)

The RENAME command copies the data and memo files using
newname, which may specify a new file name or directory path. Key
and index files must be renamed using the same syntax as the COPY
command, above.

❖ BUILD(DynamicIndex, expression,filter) is not supported.

APPENDIX B DATABASE DRIVERS—dB ASE III FILES

Miscellaneous

❖ dBase III allows a maximum of 254 characters to a character field.

❖ dBase III allows a logical field to accept one of nine possible values
(y,Y,n,N,t,T,f,F or a space character). The space character is neither
true nor false. When using a logical field from a preexisting database
in a logical expression, account for all these possibilities. Remember
that when a STRING field is used as an expression, it is true if it
contains any data and false if it is equal to zero or blank. Therefore,
to evaluate a Logical field’s truth, the expression should be true if
the field contains any of the “true” characters (T,t,Y, or y). For
example, if a Logical field were used to specify a product as taxable
or nontaxable, the expression to evaluate its truth would be:

(If Condition):
Taxable=‘T’ OR Taxable=‘t’ OR Taxable=‘Y’ OR Taxable=‘y’

❖ Clarion for Windows supports MEMO fields up to a maximum of
64K. If you have an existing file which includes a memo greater than
64K, you can use the file but not modify the large MEMOs.

❖ You can determine when your application encounters a large MEMO
by detecting when the memo pointer variable is non-blank, but the
memo appears to be blank. Error 47 (Bad Record Declaration) is
posted, and any modification to the MEMO field is ignored.

❖ dBase III supports a maximum of 10 characters in a field name. If
you require more, use an External Name with 10 characters or less.

❖ dBase III supports the use of expressions to define keys. Within the
Dictionary Editor, you can place the expression in the external name
field in the Key Properties dialog. The general format of the external
name is :

 ‘FileName=T[Expression]’

Where FileName represents the name of the index file (which can
contain a path and file extension), and T represents the type of the
index. Valid types are: C = character, D = date, and N = numeric. If
the type is D or N then Expression can name only one field.

The expression may refer to multiple fields in the record, and
contain xBase functions. Square brackets must enclose the
expression. The currently supported functions appear below. If the
driver encounters an unsupported Xbase function in a preexisting
file, it posts error 76 ‘Invalid Index String’ when the file is opened
for keys and static indexes.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

String expressions may use the ‘+’ operator to concatenate multiple
string arguments. Numeric expressions use the ‘+’ or ‘-’ operators
with their conventional meanings. The maximum length of a dBase
III expression is 250 characters.

Supported xBase commands

ALLTRIN(string) Removes leading and trailing spaces.

CTOD(string) Converts a string key to a date. The string
format mm/dd/yy; the result takes the form
‘yyyymmdd’. The yyyy element of the date
defaults to the twentieth century. An invalid date
results in a key containing blanks.

DELETED() Returns TRUE if the record is deleted.

DTOC(date) Converts a date key to string format ‘mm/dd/yy.’

DTOS(date) Converts a date key to string format
‘yyyymmdd.’

FIXED(float) Converts a float key to a numeric.

FLOAT(numeric) Converts a numeric key to a float.

IIF(bool,val1,val2) Returns val1 if the first parameter is TRUE,
otherwise returns val2.

LEFT(string, n) Returns the leftmost n characters of the string
key as a string of length n.

RIGHT(string, n) Returns the rightmost n characters of the string
key as a string of length n.

RTRIM(string) Removes spaces from the right of a string.

STR(numeric [,length [, decimal places]])
Converts a numeric to a string. The length of the
string and the number of decimal places are
optional. The default string length is 10, and the
number of decimal places is 0.

SUBSTR(string,offset,n)Returns a substring of the string key starting at
offset and of n characters in length.

TRIM(string) Removes spaces from the right of a string
(identical to RTRIM).

UPPER(string) Converts a string key to upper case.

VAL(string) Converts a string key to a numeric.

APPENDIX B DATABASE DRIVERS—dB ASE III FILES

❖ POSITION(file) returns a STRING(12).

❖ POSITION(key) returns a STRING the size of the key fields + 4
bytes.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

dBASE IV FILES

The dBase4 file driver is compatible with dBase IV. The default data file
extension is *.DBF.

Keys and Indexes exist as separate files from the data file. Keys are
dynamic—they automatically update as the data file changes. Indexes are
static—they do not automatically update, but instead require the BUILD
statement for updating. The default file extension for the index file is
*.NDX.

dBase IV supports multiple index files, whose extension is *.MDX. The
miscellaneous section describes procedures for using .MDX files.

The driver stores records as fixed length. It stores memo fields in a
separate file. The memo file name takes the first eight characters of the
File Label plus an extension of .DBT.

Files: CWDB416.LIB Windows Export Library (16-bit)

CWDB432.LIB Windows Export Library (32-bit)

CLDB416.LIB Windows Static Link Library (16-bit)

CLDB432.LIB Windows Static Link Library (32-bit)

CWDB416.DLL Windows Dynamic Link Library (16-bit)

CWDB432.DLL Windows Dynamic Link Library (32-bit)

Tip: dBase IV was never as widely adopted as dBase III. Choose
this driver only when you must share data with an end-user
using dBase IV.

Data Types

The xBase file format stores all data as ASCII strings. You may either
specify STRING types with declared pictures for each field, or specify
native Clarion types, which the driver converts automatically.

dBase data type Clarion data type STRING w/ picture
Date DATE STRING(@D12)
*Numeric REAL STRING(@N-_p.d)
*Logical BYTE STRING(1)
Character STRING STRING
*Memo MEMO MEMO

APPENDIX B DATABASE DRIVERS—dB ASE IV FILES

If your application reads and writes to existing files, a pictured STRING
will suffice. However, if your application creates a dBase IV file, you
may require additional information for these dBase IV types:

❖ To create a numeric field in the Data Dictionary, choose the REAL
data type. In the External Name attribute, specify
‘NumericFieldName=N(Precision,DecimalPlaces)’ where
NumericFieldName is the name of the field, Precision is the
precision of the field and DecimalPlaces is the number of decimal
places.

If you’re hand coding a native Clarion data type, add the NAME
attribute using the same syntax. If you’re hand coding a STRING
with picture, STRING(@N-_9.2), NAME(‘Number’), where
Number is the field name.

❖ To create a logical field, using the data dictionary, choose the BYTE
data type. There are no special steps; however, see the miscellaneous
section for tips on reading the data from the field.

If you’re hand coding a STRING with picture, add the NAME
attribute: STRING(1), NAME(‘LogFld = L’) .

❖ To create a date field, using the data dictionary, choose the DATE
data type, rather than LONG, which you usually use for the
TopSpeed or Clarion file formats.

❖ MEMO field declarations require the a pointer field in the file’s
record structure. Declare the pointer field as a STRING(10) or a
LONG. This field will be stored in the .DBF file containing the
offset of the memo in the .DBT file. The MEMO declaration must
have a NAME() attribute naming the pointer field. An example file
declaration follows:

File FILE, DRIVER(‘dBase4’)
Memo1 MEMO(200),NAME(‘Notes’)
Memo2 MEMO(200),NAME(‘Text’)
Rec RECORD
Mem1Ptr LONG,NAME(‘Notes’)
Mem2Ptr STRING(10),NAME(‘Text’)

END
END

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

File Specifications/Maximums

File Size: 2,000,000,000 bytes

Records per File: 1,000,000,000 bytes

Record Size: 4,000 bytes

Field Size

 Character: 254 bytes

 Date: 8 bytes

 Logical: 1 byte

 Numeric: 20 bytes including decimal point

Float: 20 bytes including decimal point

 Memo: 64K (see note)

Fields per Record: 255

Keys/Indexes per File:

.NDX: No Limit

.MDX 47 tags per .MDX files

Key Sizes

 Character: 100 bytes

 Numeric, Date: 8 bytes

Memo fields per File: Dependent on available memory

Open Files: Operating system dependent

APPENDIX B DATABASE DRIVERS—dB ASE IV FILES

Driver Strings and SEND functions

Driver strings (the second parameter of the DRIVER attribute) are all
preceded by a forward slash character (/). SEND function commands
can take two formats—one with an equal sign modifies a switch setting
and return the value of the previous switch setting; the other format
(without an equal sign) returns the value of the switch.

Driver strings are sent to the file driver when the file is opened. The
SEND function sends a command to modify a setting after the file is
open. Some driver strings have no effect after the file is open, so the
SEND function syntax to modify the setting is not listed. However, the
SEND function syntax to return the value of the switch is listed for all
driver strings.

/BUFFERS=n Specify a value for the number of buffers used
to read and write to the file.

The dBase IV driver utilizes DOS buffering. The
default is three buffers of 1024 bytes each.
Increasing the number of buffers will not
increase performance when a file is shared by
multiple users.

SEND(file,’BUFFERS’)
Returns the number of buffers in the form of a
STRING.

/RECOVER
SEND(file,’RECOVER’)

Equivalent to the Xbase RECALL command,
which recovers records marked for deletion.
When using the dBase IV driver, the DELETE
statement flags a record as “inactive.” The driver
does not remove the record until the PACK
command is executed.

/RECOVER is evaluated each time you open the
file if you add the driver string to the data
dictionary. When the driver recovers the records
previously marked for deletion, you must
manually rebuild keys and indexes with the
BUILD statement.

SEND(file,’IGNORESTATUS=on|off’)

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

/IGNORESTATUS=on|off When set on, the driver does not skip deleted
records when accessing the file with GET,
NEXT, and PREVIOUS in file order. It also
enables a PUT on a deleted or held record. /
IGNORESTATUS requires opening the file in
exclusive mode.

SEND(file,’IGNORESTATUS’)
Returns the IGNORESTATUS setting (ON or
OFF) in the form of a STRING(3).

SEND(file,’DELETED’)
For use only with the SEND command, when
IGNORESTATUS is on. Reports the status of
the current record. If deleted, the return string is
“ON;” if not, “OFF.”

APPENDIX B DATABASE DRIVERS—dB ASE IV FILES

Unsupported/Modified Functions & Attributes

Memos: BINARY

dBase IV supports only text memos.

Keys: OPT

File: ENCRYPT, OWNER, RECLAIM

The dBase IV driver cannot read encrypted dBase IV files. To
reclaim space from deleted records, call PACK(file).

Transaction Processing: COMMIT(), LOGOUT(), ROLLBACK()

The dBase IV driver does not support any transaction logging.

Record Access: GET(file, fileptr, len), ADD(file, len)

dBase IV does not support variable length records

File updates:

PUT(file, fileptr, len)

dBase IV does not support variable length records

EOF(file), BOF(file)

Although the driver supports these functions, we do not recommend
their use. They must physically access the files and add overhead.
Instead, test the value returned by ERRORCODE() after each
sequential access. NEXT or PREVIOUS post Error 33 (Record Not
Available) if an attempt is made to access a record beyond the end or
beginning of the file.

ADD(file) vs. APPEND(file)

The ADD statement tests for duplicate keys before modifying the
data file or its associated KEY files. Consequently it is slower than
APPEND which performs no checks and does not update KEYs.
When adding large amounts of data to a database use
APPEND...BUILD in preference to ADD.

BUILD(key, str)

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

When building dynamic indexes, the str component may take one of
two forms:

BUILD(DynNdx, '+Pre:FLD1, -Pre:FLD2')

This form specifies the names of the fields on which to build the
index. The field names must appear as specified in the fields’
NAME() attribute if supplied, or must be the label name. A prefix
may be used for compatibility with the Clarion conventions but is
ignored.

BUILD(DynNdx, 'T[Expression]')

This form specifies the type and Expression used to build an index,
see the miscellaneous section, below.

COPY(file, newname)

The COPY() command copies data and memo files using newname,
which may specify a new file name or directory. Key or index files
are copied if the newname is a subdirectory specification. To copy an
index file to a new file, use a special form of the copy command:

COPY(file,'<index>|<newname>')

This returns File Not Found if an invalid index is passed. The COPY
command assumes a default extension of ".NDX" for both the source
and the target file names if none is specified. If you require a file
name without an extension, terminate the name with a period. Given
the file structure:

Clar2 FILE,CREATE,DRIVER('dBase3')
NumKey KEY(Num),DUP
StrKey KEY(Str1)
StrKey2 KEY(Str2)
AMemo MEMO(100), NAME('mem')
Record RECORD
Num STRING(@n-_9.2)
STR1 STRING(2)
STR2 STRING(2)
Mem STRING(10)

. .

The following commands copy this file definition to A:
COPY(Clar2,'A:\CLAR2')
COPY(Clar2,'StrKey|A:\STRKEY')
COPY(Clar2,'StrKey2|A:\STRKEY2')
COPY(Clar2,'NumKey|A:\NUMKEY')

After these calls, the following files would exist on drive A:
CLAR2.DBF, CLAR2.DBT, STRKEY.NDX, STRKEY2.NDX, and
NUMKEY.NDX.

DELETE(file)

APPENDIX B DATABASE DRIVERS—dB ASE IV FILES

When the driver deletes a record from a dBase IV database, the
record is not physically removed, instead the driver marks it inactive.
Memo fields are not physically removed from the memo file,
however they cannot be retrieved if they refer to an inactive record.
Key values are removed from the index files. To remove records and
memo fields permanently, execute a PACK(file).

Tip: To those programmers familiar with dBase IV, this driver
processes deleted records in a consistent manner with the
way dBase IV processes them after the SET DELETED ON
command is issued. Records marked for deletion are ignored
from processing by executable code statements, but remain in
the data file.

HOLD(file), HOLD(file, timeout)

dBase IV performs record locking by locking the entire record
within the data file. This prevents read access to other processes.
Therefore we recommend minimizing the amount of time for which
a record is held.

POINTER(file), POINTER(key)

There is no distinction between file pointers and key pointers; they
both contain the same value for any given record.

RECORDS(file), RECORDS(key)

Under dBase IV the RECORDS() function reports the same number
of records for the data file and its keys and indexes. Usually there
will be no difference in the number of records unless the INDEX is
out of date. Because the DELETE statement does not physically
remove records, the number of records reported by the RECORDS()
function includes inactive records. Exercise care when using this
function.

RENAME(file, newname)

The RENAME command copies the data and memo files using
newname, which may specify a new file name or directory path. Key
and index files must be renamed using the same syntax as the COPY
command, above.

❖ POSITION(file) returns a STRING(12).

❖ POSITION(key) returns a STRING containing the size of the key
fields + 4 bytes.

❖ BUILD(DynamicIndex, expression,filter) is not supported.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Miscellaneous

❖ dBase IV allows a maximum of 254 characters to a character field.

❖ dBase IV allows a logical field to accept one of 11 possible values
(1,0,y,Y,n,N,t,T,f,F or a space character). The space character is
neither true nor false. When using a logical field from a preexisting
database in a logical expression, account for all these possibilities.
Remember that when a STRING field is used as an expression, it is
true if it contains any data and false if it is equal to zero or blank.
Therefore, to evaluate a Logical field’s truth, the expression should
be true if the field contains any of the “true” characters (T,t,Y, or y).
For example, if a Logical field were used to specify a product as
taxable or nontaxable, the expression to evaluate its truth would be:

(If Condition):
Taxable=‘1’ OR Taxable=‘T’ OR Taxable=‘t’ OR Taxable=‘Y’ OR Taxable=‘y’

❖ Clarion for Windows supports MEMO fields up to a maximum of
64K. If you have an existing file which includes a memo greater than
64K, you can use the file but not modify the large MEMOs.

❖ You can determine when your application encounters a large MEMO
by detecting when the memo pointer variable is non-blank, but the
memo appears to be blank. Error 47 (Bad Record Declaration) is
posted, and any modification to the MEMO field is ignored.

❖ dBase IV supports a maximum of 10 characters in a field name. If
you require more, use an External Name with 10 characters or less.

❖ dBase IV supports the use of expressions to define keys. Within the
Dictionary Editor, you can place the expression in the external name
field in the Key Properties dialog. The general format of the external
name is :

 ‘FileName=T[Expression]’

Where FileName represents the name of the index file (which can
contain a path and file extension), and T represents the type of the
index. Valid types are: C = character, D = date, and N = numeric. If
the type is D or N then Expression can name only one field.

❖ Multiple-index (.MDX) files require the NAME() attribute on a KEY
or INDEX to specify the storage type of the key and any expression
used to generate the key values. The general format of the NAME()
attribute on a KEY or INDEX is:

 NAME(‘TagName|FileName[PageSize]=T[Expression],FOR[Expression]’)

The following documents the parameters for the NAME() attribute:

APPENDIX B DATABASE DRIVERS—dB ASE IV FILES

 TagName Specifies the name of an index tag within a
multiple index file. If omitted the driver creates
a dBase IV style .NDX file using the name
specified in FileName.

 FileName Specifies the name of the index file, which may
contain a path and extension.

 PageSize Specifies that when creating a .MDX file, (if a
TagName is specified), a number in the range 2-
32 specifying the number of 512-byte blocks in
each index page. This value is only used when
creating the file. If you specify multiple values
via declarations for different tags in the same
.MDX file, the largest value will be selected.
The default value is 2.

 T Specifies the type of the index,. Legal types are
C = character, D = date, N = numeric. If the
type is D or N then Expression may name only
one field.

 Expression Specifies an expression to generate the index. It
may refer to multiple fields, and invoke
multiple xBase functions. The functions
currently supported are listed below. Square
brackets must enclose the expression.

Elements of the NAME() attribute may be omitted from the right.
When specifying an Expression, you must also specify the type and
name. If the Expression is omitted, the driver determines the
Expression from the key fields when the file is created, or from the
index file when opened.

If the type is omitted, the driver determines the index type from the
first key component when the file is created, or from the index file
when opened.

If the NAME() attribute is omitted altogether, the index file name is
determined from the key label. The path defaults to the same
location as the .DBF.

Tag names are limited to 9 characters in length. If the supplied
name is too long it is automatically truncated.

Specify all field names in the NAME() attribute without a prefix.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

❖ dBase IV additionally supports the use of the Xbase FOR statement
in expressions to define keys. The expressions supported in the FOR
condition must be a simple condition of the form:
 expression comparison_op expression

comparison_op may be one of the following: <, <=, =<, <>, =, =>,
>= or >.

The expression may refer to multiple fields in the record, and contain
xBase functions. Square brackets must enclose the expression. The
currently supported functions appear below. If the driver encounters
an unsupported Xbase function in a preexisting file, it posts error 76
‘Invalid Index String’ when the file is opened for keys and static
indexes.

String expressions may use the ‘+’ operator to concatenate multiple
string arguments. Numeric expressions use the ‘+’ or ‘-’ operators
with their conventional meanings. The maximum length of a dBase
IV expression is 250 characters.

APPENDIX B DATABASE DRIVERS—dB ASE IV FILES

Supported xBase commands

ALLTRIN(string) Removes leading and trailing spaces.

CTOD(string) Converts a string key to a date. The string
format mm/dd/yy; the result takes the form
‘yyyymmdd’. The yyyy element of the date
defaults to the twentieth century. An invalid date
results in a key containing blanks.

DELETED() Returns TRUE if the record is deleted.

DTOC(date) Converts a date key to string format ‘mm/dd/yy.’

DTOS(date) Converts a date key to string format
‘yyyymmdd.’

FIXED(float) Converts a float key to a numeric.

FLOAT(numeric) Converts a numeric key to a float.

IIF(bool,val1,val2) Returns val1 if the first parameter is TRUE,
otherwise returns val2.

LEFT(string, n) Returns the leftmost n characters of the string
key as a string of length n.

RIGHT(string, n) Returns the rightmost n characters of the string
key as a string of length n.

RTRIM(string) Removes spaces from the right of a string.

STR(numeric [,length[, decimal places]])
converts a numeric to a string. The length of the
string and the number of decimal places are
optional. The default string length is 10, and the
number of decimal places is 0.

SUBSTR(string,offset,n)Returns a substring of the string key starting at
offset and of n characters in length.

TRIM(string) Removes spaces from the right of a string
(identical to RTRIM).

UPPER(string) Converts a string key to upper case.

VAL(string) Converts a string key to a numeric.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

DOS FILES

The DOS file driver reads and writes any binary, byte-addressable files.
Neither fields nor records are delimited. When reading a record, the
driver reads the number of bytes defined in the file’s RECORD structure,
unless a length parameter is specified in the GET statement.

The DOS driver supports the length parameter for the ADD, APPEND,
GET, and PUT statements; this allows for variable length records in a
DOS file.

The POINTER function returns the relative byte position within the file
of the beginning of the last record accessed by an ADD, APPEND, GET,
or NEXT statement.

This file driver performs forward sequential processing only. No key or
transaction processing functions are supported, and the PREVIOUS
statement is not supported.

Tip: Due to its limitations, the main function of this driver is as a
disk editor for binary files.

Files: CWDOS16.LIB Windows Export Library (16-bit)

CWDOS32.LIB Windows Export Library (32-bit)

CLDOS16.LIB Windows Static Link Library (16-bit)

CLDOS32.LIB Windows Static Link Library (32-bit)

CWDOS16.DLL Windows Dynamic Link Library (16-bit)

CWDOS32.DLL Windows Dynamic Link Library (32-bit)

Data Types
BYTE DECIMAL
SHORT PDECIMAL
USHORT STRING
LONG CSTRING
ULONG PSTRING
SREAL DATE
REAL TIME
BFLOAT4 GROUP
BFLOAT4

APPENDIX B DATABASE DRIVERS—DOS FILES

File Specifications/Maximums
File Size : 4,294,967,295
Records per File : 4,294,967,295
Record Size : 64K
Field Size : 64K
Fields per Record : 64K
Keys/Indexes per File: n/a
Key Size : n/a
Memo fields per File: n/a
Memo Field Size : n/a
Open Data Files : Operating system dependent

Driver Strings and SEND functions

Driver strings (the second parameter of the DRIVER attribute) are all
preceded by a forward slash character (/). SEND function commands
can take two formats—one with an equal sign modifies a switch setting
and return the value of the previous switch setting; the other format
(without an equal sign) returns the value of the switch.

Driver strings are sent to the file driver when the file is opened. The
SEND function sends a command to modify a setting after the file is
open. Some driver strings have no effect after the file is open, so the
SEND function syntax to modify the setting is not listed. However, the
SEND function syntax to return the value of the switch is listed for all
driver strings.

/FILEBUFFERS=n Specifies a value for the number of buffers used
to read and write to the file.

The DOS driver allocates internal buffers of 512
bytes, or the size of your record, whichever is
larger, to store the retrieved file. The default
number of buffers is 2 for files opened denying
write access to other users, and 1 for all other
open modes. Use the optional driver string to
increase the buffers should you find access to
records is slow.

SEND(file, ‘FILEBUFFERS’)
Returns the value of the number of buffers in
STRING format.

/QUICKSCAN=on|off

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

SEND(file,’QUICKSCAN=on|off’)
The DOS driver reads a buffer at a time (not a
record), allowing for fast access. In a multi-user
environment these buffers are not 100%
trustworthy for subsequent access, because
another user may change the database between
accesses. As a safeguard, the driver rereads the
buffers before each record access. To disable the
reread, set QUICKSCAN to ON. The default is
ON for files opened denying write access to
other users, and OFF for all other open modes.

SEND(file,’QUICKSCAN’)
Returns the Quickscan setting (ON or OFF) in
the form of a STRING(3).

Unsupported Functions and Attributes

Memos: NOMEMO()

Transaction Processing: COMMIT(), LOGOUT(), ROLLBACK()

Key Processing: BUILD(key), BUILD(index)
GET(file,key), GET(key,keypointer),
RESET(key,string)
SET(file,key), SET(key), SET(key,key),
SET(key,keypointer), SET(key,key,filepointer),
DUPLICATE()
POINTER(key)
POSITION(key)
RECORDS(key)REGET(key)

Record Locking: HOLD(), RELEASE()

File Buffering: STREAM()

File Information: RECORDS(file)

Sequential Processing: PREVIOUS(), BOF(), SKIP()

File Manipulation: BUILD(), DELETE(), PACK(), WATCH(), REGET()

Miscellaneous

❖ POSITION(file) returns a STRING(4).

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

FOXPRO AND FOXBASE FILES

The FoxPro file driver is compatible with FoxPro and FoxBase. The
default data file extension is *.DBF.

The default index file extension is *.IDX. The default Memo file
extension is .FBT. FoxPro also supports multiple index files, whose
default extension is *.CDX. The miscellaneous section describes the
procedures for using the .CDX files.

Files: CWFOX16.LIB Windows Export Library (16-bit)

CWFOX32.LIB Windows Export Library (32-bit)

CLFOX16.LIB Windows Static Link Library (16-bit)

CLFOX32.LIB Windows Static Link Library (32-bit)

CWFOX16.DLL Windows Dynamic Link Library (16-bit)

CWFOX32.DLL Windows Dynamic Link Library (32-bit)

Tip: The FoxPro index file format is the backbone of its vaunted
“Rushmore” technology. The old saying “There’s no free
lunch,” however, applies. Adding and appending records to a
large database is a slower process than in other xBase
formats, due to the time required to update the index file.

Data Types

The xBase file format stores all data as ASCII strings. You may either
specify STRING types with declared pictures for each field, or specify
native Clarion types, which the driver converts automatically.

FoxPro data type Clarion data type STRING w/ picture
Date DATE STRING(@D12)
*Numeric REAL STRING(@N-_p.d)
*Logical BYTE STRING(1)
Character STRING STRING
*Memo MEMO MEMO

If your application reads and writes to existing files, a pictured STRING
will suffice. However, if your application creates a FoxPro or FoxBase
file, you may require additional information for these FoxPro and
FoxBase types:

❖ To create a numeric field in the Data Dictionary, choose the REAL
data type. In the External Name attribute, specify
‘NumericFieldName=N(Precision,DecimalPlaces)’ where

APPENDIX B DATABASE DRIVERS—FOXPRO FILES

NumericFieldName is the name of the field, Precision is the
precision of the field and DecimalPlaces is the number of decimal
places.

If you’re hand coding a native Clarion data type, add the NAME
attribute using the same syntax. If you’re hand coding a STRING
with picture, STRING(@N-_9.2), NAME(‘Number’), where
Number is the field name.

❖ To create a logical field, using the data dictionary, choose the BYTE
data type. There are no special steps; however, see the miscellaneous
section for tips on reading the data from the field.

If you’re hand coding a STRING with picture, add the NAME
attribute: STRING(1), NAME(‘LogFld = L’) .

❖ To create a date field, using the data dictionary, choose the DATE
data type, rather than LONG, which you usually use for the
TopSpeed or Clarion file formats.

❖ MEMO field declarations require the a pointer field in the file’s
record structure. Declare the pointer field as a STRING(10) or a
LONG. This field will be stored in the .DBF file containing the
offset of the memo in the .DBT file. The MEMO declaration must
have a NAME() attribute naming the pointer field. An example file
declaration follows:

File FILE, DRIVER(‘FoxPro’)
Memo1 MEMO(200),NAME(‘Notes’)
Memo2 MEMO(200),NAME(‘Text’)
Rec RECORD
Mem1Ptr LONG,NAME(‘Notes’)
Mem2Ptr STRING(10),NAME(‘Text’)

END
END

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

File Specifications/Maximums
File Size: 2,000,000,000 bytes
Records per File: 1,000,000,000 bytes
Record Size: 4,000 bytes
Field Size
 Character: 254 bytes
 Date: 8 bytes
 Logical: 1 byte
 Numeric: 20 bytes including decimal point
 Float: 20 bytes including decimal point
 Memo: 65,520 bytes (see note)
Fields per Record: 255
Keys/Indexes per File: No Limit
Key Sizes
 Character: 100 bytes (.IDX)

254 bytes (.CDX)
 Numeric, Date: 8 bytes
Memo fields per File: Dependent on available memory
Open Files: Operating system dependent

APPENDIX B DATABASE DRIVERS—FOXPRO FILES

Driver Strings and SEND functions

Driver strings (the second parameter of the DRIVER attribute) are all
preceded by a forward slash character (/). SEND function commands
can take two formats—one with an equal sign modifies a switch setting
and return the value of the previous switch setting; the other format
(without an equal sign) returns the value of the switch.

Driver strings are sent to the file driver when the file is opened. The
SEND function sends a command to modify a setting after the file is
open. Some driver strings have no effect after the file is open, so the
SEND function syntax to modify the setting is not listed. However, the
SEND function syntax to return the value of the switch is listed for all
driver strings.

/BUFFERS=n Specify a value for the number of buffers used
to read and write to the file.

The FoxPro driver utilizes DOS buffering. The
default is three buffers of 1024 bytes each.
Increasing the number of buffers will not
increase performance when a file is shared by
multiple users.

SEND(file,’BUFFERS’)
Returns the number of buffers in the form of a
STRING.

/RECOVER
SEND(file,’RECOVER’)

Equivalent to the Xbase RECALL command,
which recovers records marked for deletion.
When using the FoxPro driver, the DELETE
statement flags a record as “inactive.” The driver
does not remove the record until the PACK
command is executed.

/RECOVER is evaluated each time you open the
file if you add the driver string to the data
dictionary. When the driver recovers the records
previously marked for deletion, you must
manually rebuild keys and indexes with the
BUILD statement.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

/IGNORESTATUS=on|off When set on, the driver does not skip deleted
records when accessing the file with GET,
NEXT, and PREVIOUS in file order. It also
enables a PUT on a deleted or held record. /
IGNORESTATUS requires opening the file in
exclusive mode.

SEND(file,’IGNORESTATUS’)
Returns the IGNORESTATUS setting (ON or
OFF) in the form of a STRING(3).

SEND(file,’DELETED’)
For use only with the SEND command, when
IGNORESTATUS is on. Reports the status of
the current record. If deleted, the return string is
“ON;” if not, “OFF.”

Unsupported/Modified Functions & Attributes

Memos: BINARY

FoxPro and FoxBase support only text memos.

Keys: DUP, NOCASE, OPT, ascending|descending

File: ENCRYPT, OWNER, RECLAIM

The FoxPro driver cannot read encrypted FoxPro or FoxBase files.
To reclaim space from deleted records, call PACK(file).

Transaction Processing: COMMIT(), LOGOUT(), ROLLBACK()

The FoxPro driver does not support any transaction logging.

Record Access: GET(file, fileptr, len), ADD(file, len)

FoxPro and FoxBase do not support variable length records

File updates: PUT(file, fileptr, len)

APPENDIX B DATABASE DRIVERS—FOXPRO FILES

FoxPro and FoxBase do not support variable length records

EOF(file), BOF(file)

Although the driver supports these functions, we do not recommend
their use. They must physically access the files and add overhead.
Instead, test the value returned by ERRORCODE() after each
sequential access. NEXT or PREVIOUS post Error 33 (Record Not
Available) if an attempt is made to access a record beyond the end or
beginning of the file.

ADD(file) vs. APPEND(file)

The ADD statement tests for duplicate keys before modifying the
data file or its associated KEY files. Consequently it is slower than
APPEND which performs no checks and does not update KEYs.
When adding large amounts of data to a database use
APPEND...BUILD in preference to ADD.

BUILD(key, str)

When building dynamic indexes, the str component may take one of
two forms:

BUILD(DynNdx, '+Pre:FLD1, -Pre:FLD2')

This form specifies the names of the fields on which to build the
index. The field names must appear as specified in the fields’
NAME() attribute if supplied, or must be the label name. A prefix
may be used for compatibility with the Clarion conventions but is
ignored.

BUILD(DynNdx, 'T[Expression]')

This form specifies the type and Expression used to build an index,
see the miscellaneous section, below.

COPY(file, newname)

The COPY() command copies data and memo files using newname,
which may specify a new file name or directory. Key or index files
are copied if the newname is a subdirectory specification. To copy an
index file to a new file, use a special form of the copy command:

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

COPY(file,'<index>|<newname>')

This returns File Not Found if an invalid index is passed. The COPY
command assumes a default extension of ".IDX" for both the source
and the target file names if none is specified. If you require a file
name without an extension, terminate the name with a period. Given
the file structure:

Clar2 FILE,CREATE,DRIVER('FOXPRO')
NumKey KEY(Num),DUP
StrKey KEY(Str1)
StrKey2 KEY(Str2)
AMemo MEMO(100), NAME('mem')
Record RECORD
Num STRING(@n-_9.2)
STR1 STRING(2)
STR2 STRING(2)
Mem STRING(10)

. .

The following commands copy this file definition to A:
COPY(Clar2,'A:\CLAR2')
COPY(Clar2,'StrKey|A:\STRKEY')
COPY(Clar2,'StrKey2|A:\STRKEY2')
COPY(Clar2,'NumKey|A:\NUMKEY')

After these calls, the following files would exist on drive A:
CLAR2.DBF, CLAR2.DBT, STRKEY.IDX, STRKEY2.IDX, and
NUMKEY.IDX.

DELETE(file)

When the driver deletes a record from a FoxPro or FoxBase
database, the record is not physically removed, instead the driver
marks it inactive. Memo fields are not physically removed from the
memo file, however they cannot be retrieved if they refer to an
inactive record. Key values are removed from the index files. To
remove records and memo fields permanently, execute a PACK(file).

Tip: To those programmers familiar with FoxPro, this driver
processes deleted records consistent with the way FoxPro
processes them after the SET DELETED ON command is
issued. Records marked for deletion are ignored from
processing by executable code statements, but remain in the
data file.

HOLD(file), HOLD(file, timeout)

FoxPro and FoxBase perform record locking by locking the entire
record within the data file. This prevents read access to other
processes. Therefore we recommend minimizing the amount of time
for which a record is held.

APPENDIX B DATABASE DRIVERS—FOXPRO FILES

POINTER(file), POINTER(key)

There is no distinction between file pointers and key pointers; they
both contain the same value for any given record.

RECORDS(file), RECORDS(key)

Under FoxPro and FoxBase the RECORDS() function reports the
same number of records for the data file and its keys and indexes.
Usually there will be no difference in the number of records unless
the INDEX is out of date. Because the DELETE statement does not
physically remove records, the number of records reported by the
RECORDS() function includes inactive records. Exercise care when
using this function.

RENAME(file, newname)

The RENAME command copies the data and memo files using
newname, which may specify a new file name or directory path. Key
and index files must be renamed using the same syntax as the COPY
command, above.

❖ POSITION(file) returns a STRING(12).

❖ POSITION(key) returns a STRING the size of the key fields + 4
bytes.

❖ BUILD(DynamicIndex, expression,filter) is not supported.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Miscellaneous

❖ FoxPro and FoxBase allow a logical field to accept one of 11
possible values (0,1,y,Y,n,N,t,T,f,F or a space character). The space
character is neither true nor false. When using a logical field from a
preexisting database in a logical expression, account for all these
possibilities. Remember that when a STRING field is used as an
expression, it is true if it contains any data and false if it is equal to
zero or blank. Therefore, to evaluate a Logical field’s truth, the
expression should be true if the field contains any of the “true”
characters (1,T,t,Y, or y). For example, if a Logical field were used
to specify a product as taxable or nontaxable, the expression to
evaluate its truth would be:

(If Condition):
Taxable=‘1’ OR Taxable=‘T’ OR Taxable=‘t’ OR Taxable=‘Y’ OR Taxable=‘y’

❖ Clarion for Windows supports MEMO fields up to a maximum of
64K. If you have an existing file which includes a memo greater than
64K, you can use the file but not modify the large MEMOs.

❖ You can determine when your application encounters a large MEMO
by detecting when the memo pointer variable is non-blank, but the
memo appears to be blank. Error 47 (Bad Record Declaration) is
posted, and any modification to the MEMO field is ignored.

❖ FoxPro and FoxBase support a maximum of 10 characters in a field
name. If you require more, use an External Name with 10 characters
or less.

❖ FoxPro and FoxBase support the use of expressions to define keys.
Within the Dictionary Editor, you can place the expression in the
external name field in the Key Properties dialog. The general format
of the external name is :

 ‘FileName=T[Expression]’

Where FileName represents the name of the index file (which can
contain a path and file extension), and T represents the type of the
index. Valid types are: C = character, D = date, and N = numeric. If
the type is D or N then Expression can name only one field.

❖ Multiple-index (.CDX) files require the NAME() attribute on a KEY
or INDEX to specify the storage type of the key and any expression
used to generate the key values. The general format of the NAME()
attribute on a KEY or INDEX is:

NAME(‘TagName|FileName[PageSize]=T[Expression],COMPRESSED’)

The following documents the parameters for the NAME() attribute:

APPENDIX B DATABASE DRIVERS—FOXPRO FILES

TagName Names an index tag within a multiple index file.
If the TagName is omitted the driver creates an
.IDX file with the name specified in FileName.

FileName Names the index file, and optionally contains a
path and extension.

PageSize May only be specified when creating a .CDX
file (if a TagName is specified). It is a number in
the range 2-32 specifying the number of 512-
byte blocks in each index page. This value is
only used when creating the file. If multiple
values are specified via declarations for different
tags in the same .MDX file, the largest value
will be selected. The default value is 2.

T Specifies the type of the index; legal types are C
= character, D = date, N = numeric. If the type is
D or N then Expression may name only one
field.

Expression Specifies the expression used to generate the
index. The expression may refer to multiple
fields, and invoke multiple of xBase functions.
The functions currently supported are listed
below. Square brackets must enclose the
expression.

COMPRESSED When specified, the FoxPro Driver creates a
FoxPro 2 compatible compressed .IDX file.

Elements of the NAME() attribute may be omitted from the right.
When specifying an Expression, the type and name must also be
specified. If the Expression is omitted, the driver determines the
Expression from the key fields when the file is created, or from the
index file when opened.

If the type is omitted, the driver determines the index type from the
first key component when the file is created, or from the index file
when opened.

If the NAME() attribute is omitted altogether, the index file name is
determined from the key label. The path defaults to the same
location as the .DBF.

Tag names are limited to 9 characters in length; if the supplied name
is too long it is automatically truncated.

All field names in the NAME() attribute must be specified without a
prefix.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

❖ FoxPro additionally supports the use of the Xbase FOR statement in
expressions to define keys. The expressions supported in the FOR
condition must be a simple condition of the form:

expression comparison_op expression

comparison_op may be one of the following: <, <=, =<, <>, =, =>,
>= or >.

The expression may refer to multiple fields in the record, and
contain xBase functions. Square brackets must enclose the
expression. The currently supported functions appear below. If the
driver encounters an unsupported Xbase function in a preexisting
file, it posts error 76 ‘Invalid Index String’ when the file is opened
for keys and static indexes.

String expressions may use the ‘+’ operator to concatenate multiple
string arguments. Numeric expressions use the ‘+’ or ‘-’ operators
with their conventional meanings. The maximum length of a FoxPro
or FoxBase expression is 250 characters.

APPENDIX B DATABASE DRIVERS—FOXPRO FILES

Supported xBase Commands

ALLTRIN(string) Removes leading and trailing spaces.

CTOD(string) Converts a string key to a date. The string
format mm/dd/yy; the result takes the form
‘yyyymmdd’. The yyyy element of the date
defaults to the twentieth century. An invalid date
results in a key containing blanks.

DELETED() Returns TRUE if the record is deleted.

DTOC(date) Converts a date key to string format ‘mm/dd/yy.’

DTOS(date) Converts a date key to string format
‘yyyymmdd.’

FIXED(float) Converts a float key to a numeric.

FLOAT(numeric) Converts a numeric key to a float.

IIF(bool,val1,val2) Returns val1 if the first parameter is TRUE,
otherwise returns val2.

LEFT(string, n) Returns the leftmost n characters of the string
key as a string of length n.

RIGHT(string, n) Returns the rightmost n characters of the string
key as a string of length n.

RTRIM(string) Removes spaces from the right of a string.

STR(numeric [,length[, decimal places]])
converts a numeric to a string. The length of the
string and the number of decimal places are
optional. The default string length is 10, and the
number of decimal places is 0.

SUBSTR(string,offset,n)Returns a substring of the string key starting at
offset and of n characters in length.

TRIM(string) Removes spaces from the right of a string
(identical to RTRIM).

UPPER(string) Converts a string key to upper case.

VAL(string) Converts a string key to a numeric.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

TOPSPEED DATABASE FILES

The TopSpeed Database file system is a high-performance, high-security,
proprietary file driver for Clarion development tools. It is not compatible
with Clarion 2.1 and 3.0 files.

Data tables, keys, indexes and memos can all be stored together in a
single DOS file. The default file extension is *.TPS. A separate
“Transaction Control File” takes the *.TCF extension.

The TopSpeed driver can optionally store multiple tables in a single
DOS file. This allows you to open as many data tables, keys and indexes
as necessary using a single DOS file handle. This feature may be
especially useful when there are a large number of small tables, or when
a group of related files are normally accessed together. All keys, indexes,
and Memos are always stored internally.

In addition, the TopSpeed file system supports the BLOB data type
(Binary Large OBject), a string field which is completely variable-length
and may be greater than 64K in size (in both 16 and 32-bit applications).
A BLOB must be declared before the RECORD structure. Memory for a
BLOB is dynamically allocated and de-allocated as necessary. For more
information, see BLOB in Chapter 10 of the Language Reference.

Files: CWTPS16.LIB Windows Export Library (16-bit)

CWTPS32.LIB Windows Export Library (32-bit)

CLTPS16.LIB Windows Static Link Library (16-bit)

CLTPS32.LIB Windows Static Link Library (32-bit)

CWTPS16.DLL Windows Dynamic Link Library (16-bit)

CWTPS32.DLL Windows Dynamic Link Library (32-bit)

Tip: This new driver offers speed, security, and takes up fewer
resources on the end users system.

APPENDIX B DATABASE DRIVERS—TOPSPEED DATABASE FILES

Data Types
BYTE DECIMAL
SHORT STRING
USHORT CSTRING
LONG PSTRING
ULONG MEMO
SREAL GROUP
REAL BLOB

Maximum File Specifications
File Size : Limited only by disk space
Records per File : Unsigned Long (4,294,967,295)
Record Size : 64K
Field Size : 64K
Fields per Record : 64K
Keys/Indexes per File: 240
Key Size : 64K
Memo fields per File: 255
Memo Field Size : 64K
BLOB fields per File: 255
BLOB Size : Hardware dependent
Open Data Files : Operating system dependent

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Driver Strings and SEND functions

Driver strings (the second parameter of the DRIVER attribute) are all
preceded by a forward slash character (/). SEND function commands
can take two formats—one with an equal sign modifies a switch setting
and return the value of the previous switch setting; the other format
(without an equal sign) returns the value of the switch.

Driver strings are sent to the file driver when the file is opened. The
SEND function sends a command to modify a setting after the file is
open. Some driver strings have no effect after the file is open, so the
SEND function syntax to modify the setting is not listed. However, the
SEND function syntax to return the value of the switch is listed for all
driver strings.

SEND(file,’TCF=file name’)
/TCF=file name Specifies a transaction control file other than the

default \TOPSPEED.TCF. The file holds all
multi-file commits until the program terminates
or a SEND(TCF=file name) executes.

SEND(file,’PNM=name’)
/PNM=name Retrieves the names of the tables in a group (a

single DOS file).

To retrieve the first name, issue this command:
SEND(file,’PNM=’). This returns the name of
the first table. Subsequent calls pass the name
received and return the next name.

For example, given a file with three tables—
Supp, Part, and Ship, the example below
displays an alphabetical listing:

CODE
name = ' '

LOOP
name = (SEND(Supp,'PNM=' & name)
If name
DISPLAY name

ELSE
BREAK

 END
 END

APPENDIX B DATABASE DRIVERS—TOPSPEED DATABASE FILES

Unsupported Functions and Attributes

❖ Record Access:GET(file, fileptr, len), ADD(file, len),
APPEND(file, len)

 The TopSpeed Driver does not support variable length records

GET(file,1)

This relies on a valid pointer returned from the POINTER() function.
You cannot use GET(file,1) to retrieve the first record because 1 is
not a valid pointer.

❖ File updates: PUT(file, fileptr, len)

 The TopSpeed Driver does not support variable length records

❖ Keys: NAME()

The TopSpeed Driver does not support external names for keys. All
keys are stored internally.

Miscellaneous

❖ SHARE and open access modes:

The following open access modes are supported Share required
34 (12h) Read/Write, deny write (default for OPEN) Yes
66 (42h) Read/Write, deny none (default for SHARE) Yes
64 (40h) Read Only, deny none Yes
18 (12h) Read/Write, deny all No
16 (10h) Read Only, deny all No
32 (20h) Read Only, deny write No

For the modes indicated, SHARE.EXE (which implements DOS
record locking) must be loaded in AUTOEXEC.BAT or
CONFIG.SYS. The following example loads SHARE in
AUTOEXEC.BAT, providing 500 maximum file locks, and the
default 2048 bytes for the storage area.
C:\DOS\SHARE.EXE /L:500

If SHARE.EXE is required but not loaded, the program generates a
runtime error when OPEN or SHARE is called (deny none modes),
or when an update is attempted (deny write modes).

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

❖ APPEND()

APPEND() is recommended over ADD() if the total size of the keys
exceeds the amount of RAM available, if there is more than one key,
or when adding a large number of records. The size of a key (for this
purpose) is the number of entries times (the sum of key fields + 10
bytes). If the records being added are already in an approximate key
order, then you can discount that key for the purposes of the above
calculation.

 As an example, if a file has two 40 byte keys and 2 Megabytes of
RAM are available, then ADD() becomes (relatively) slow when the
database size exceeds about 2,000,000 / (40 + 10 + 40 + 10) =
20,000 records.

❖ BUILD(file), BUILD(key)

The TopSpeed driver implements incremental building; this means
that building a key only reads records starting from the first record
appended since the key was last built. The driver merges the new
keys with the existing key. Thus building a large key where only a
few recently added records have been modified should be fast.
Building an index is similar, but must start at the minimum physical
record whose position in the index has changed since the index was
last built.

Dynamic indexes are not retained, so cannot be built incrementally.

❖ LOCK(file)

LOCK() only affects other LOCK() calls. The only effect of a
successful call to LOCK() is that other processes will get an error
FLALLK when they call LOCK().

❖ LOGOUT(), COMMIT(), ROLLBACK()

A transaction control file is used to ensure that transactions which
update more than one DOS file are committed atomically. By default
the transaction control file (.TCF) has the name “\TOPSPEED.TCF.”
A SEND() command allows you to change this.

The .TCF file must be accessible when any files controlled by it are
accessed. If a transaction involves updating more than one shared
network file, you should specify a transaction control file on the
network. It is not necessary to use the same TCF file for all
transactions; however, it must reside where it can be read by
everyone accessing the file. If not, after a crash/power-fail during a
COMMIT(), some files may be updated, and others not. (The files
will not be corrupted - they may just not be consistent with one
another).

APPENDIX B DATABASE DRIVERS—TOPSPEED DATABASE FILES

A .TCF file can be deleted only if all files controlled by it may have
been opened (for writing) since a crash/power-fail.

❖ POINTER(key)

The value returned by POINTER(key) corresponds to a physical data
record. Consequently when that record is removed by a call to
DELETE() the pointer becomes invalid. Any subsequent access using
the pointer fails. If you require fuzzy matching whereby the nearest
record is returned, use the POSITION() function and appropriate
access functions.

❖ STREAM(), FLUSH()

When reading a large number of records, use STREAM() or open the
file in a deny write mode e.g. OPEN(f) rather than SHARE(f). After
the records have been read, call FLUSH() to allow other users access.

It is very important to use STREAM() when adding/appending/
putting a large number of records. STREAM() will typically make
processing about 20 times faster. For example, adding 1000 records
might take nearly 2 minutes without STREAM(), but only 5 seconds
with STREAM. It is not necessary to use STREAM() or FLUSH()
on a logged out file (performance on logged out files is always
good).

Tip: When utilizing STREAM() to update a large number of records,
the driver stores uncommitted or unflushed pages in memory,
and it is possible to run out of memory. Calling COMMIT(),
FLUSH(), or LOGOUT() periodically prevents this. To calculate
the maximum “updates” between each COMMIT(), divide the
available memory by the update size. When appending, the
update size is approximately the size of the record in bytes.
When adding, the update size is approximately the size of the
records and key component fields in bytes. When updating
records using PUT(), it’s theoretically possible for the update
size to reach 7K. In practice, we recommend committing data
every 100 or so updates.

❖ POSITION(file) returns a STRING the size of the key fields + 4
bytes.

❖ POSITION(key) returns a STRING the size of the key fields + 4
bytes.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Storing multiple Tables (data files) in a single DOS file.

By using the special escape sequence ‘\!’ in the NAME() attribute of
a TopSpeed file declaration, you can specify that a single DOS file
will store more than one table. For example, to declare a single DOS
file ‘s&p.tps’ which is to contain 3 logical tables, called supp, part
and ship:
Supp FILE,DRIVER(‘TopSpeed’),PRE(Supp),CREATE,NAME(‘S&P\!Supp’)
 ...
Part FILE,DRIVER(‘TopSpeed’),PRE(Part),CREATE,NAME(‘S&P\!Part’)
 ...
Ship FILE,DRIVER(‘TopSpeed’),PRE(Ship),CREATE,NAME(‘S&P\!Ship’)
 ...

The data files share a single DOS file handle, opened when the first
file is opened, and closed when the last file is closed. The first open
mode determines the open mode for all the other files. If the first
open mode is read-only, then no updates of any kind can be
performed successfully (ACCDNID will be returned).

If one file in a group is logged out, then all the files in the group are
effectively logged out. If one file in a group is flushed, then all files
in the group are flushed.

This feature is especially useful when there are a large number of
small tables, or when the application must normally access group of
related files together.

If no escape sequence is specified, then a default table name
‘unnamed’ is supplied, so that the following are all equivalent:
foo FILE,DRIVER(‘TopSpeed’)
foo FILE,DRIVER(‘TopSpeed’),NAME(‘foo’)
foo FILE,DRIVER(‘TopSpeed’),NAME(‘foo\!unnamed’)

A SEND() command allows the programmer to determine the names
of the files within a group. Files can be renamed within a group; for
example, given the above declarations the following command will
rename the file called Supp to Old_Supp:
RENAME(Supp,’S&P\!Old_Supp’)

Renaming to another existing group normally involves copying/
removal, so is less efficient.

If your are using the OWNER attribute on multiple tables in a
TopSpeed database file, all tables must have the same OWNER
attribute.

APPENDIX B DATABASE DRIVERS—TOPSPEED DATABASE FILES

USING THE TOPSPEED DATABASE RECOVERY UTILITY

The TopSpeed file system is designed to automatically repair most
errors. If the data file is physically damaged during a system
malfunction, the TopSpeed Database Recovery Utility can recover the
undamaged portions of your data.

Note: The TopSpeed Database Recovery Utility is an emergency
repair tool and should not be used on a regular basis. Use it
only when a file has been damaged.

The TopSpeed Database Recovery Utility reads the damaged file and
writes the recovered records to a new file. It uses the information stored
in the file’s header or scans the file recovering undamaged portions.
Optionally, you can provide an example file containing table (individual
file) and key layout.

The TopSpeed Database Recovery Utility is a freely distributable utility
designed to enable your end users to recover damaged files.

The recovery utility is designed to work interactively or transparently via
command line parameters. Interactively, you can use the utility to
recover damaged files and provide the parameters via two wizard
dialogs. Using the command line parameters, you can incorporate it in
your application using a RUN() statement or create a shortcut (in
Windows 95) or Program Manager Icon (in Windows 3.1x) with the
parameters to enable end users to recover data files.

Using the TopSpeed Database Recovery Utility
Interactively

1. Start the utility by double-clicking on the TopSpeed Database
Recovery Utility Icon In the Clarion for Windows 1.5 Program
Group.

The TopSpeed Database Recovery Utility dialog appears. The
utility consists of two wizard dialogs.

2. In the Source (file to recover) section, specify the file name or press
the Browse button to select it from a standard file open dialog.

3. If the file has a password, type it in the Password entry box.

If the database file contains multiple tables (data files), each table
must have the same password.

4. Optionally, in the Destination (result file) section, specify the file
name for the target file or press the Browse button to select it from a
standard file open dialog.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

By default the .TPR extension is added to the source file name. This
parameter is optional. If omitted, the original (source file) is
overwritten and a backup file is created. The source file is renamed
to filename.TPx, where x is automatically incremented from 1 to 9
each time a new file is created. If all nine numbers are used, any
subsequent files created are given the extension .TP$ and are
overwritten.

55555. If the result file is to have a different password, type it in the
Password entry box. If omitted, the password is removed.

66666. Press the Next button.

The second wizard dialog for the TopSpeed Database Recovery
Utility appears.

77777. Optionally, specify the Example File file name or press the Browse
button to select it from a standard file open dialog.

The utility uses the Example File to determine table layouts and key
definitions in the event those areas of the source file are damaged.
The default extension is .TPE, but if you choose, you may use any
valid DOS extension

Tip: We recommend shipping an example file when you deploy
your application. This improves data recovery from a
damaged file.

88888. If the example file has a password, type it in the Password entry
box.

9. If you want the utility to rebuild Keys, check the Build Keys box.

If omitted, the keys are rebuilt by the original application when it
attempts to open it.

10. If you want to use the Header Information in the source file, check
the Use Header box.

Utilizing Header Information optimizes the utility’s performance,
but should not be used if the file header is corrupt. If omitted, the
utility searches the entire data file and restores all undamaged pages.

1111111111. If the application uses a Locale (.ENV) File for an alternate collating
sequence, specify the .ENV file or press the Browse button to select
it from a standard file open dialog.

12. If the file is using the OEM attribute to control the collating
sequence, Check the Use OEM box.

This enables the OEMTOANSI and ANSITOOEM conversion.

1313131313. Press the Start button to begin the recovery process.

APPENDIX B DATABASE DRIVERS—TOPSPEED DATABASE FILES

If the utility does not find any errors, a message appears informing
you that “No Errors Detected in <fliename.ext>” and asks if you
want to continue with recovery.

Command Line Parameters

The utility can also accept command line parameters which enables you
to execute it from an application or Program Manager Icon (or Shortcut
in Windows 95).

TPSFIX sourcepath[?password] [destpath[?password]]
 [/E:examplepath[?password]] [/L:localepath] [/H] [/K] [/P] [/O]

sourcepath The file name and path of the source (damaged)
database file.

[?password] The database file’s password.

destpath The file name and path of the recovered
database file.

[?password] The recovered database file’s password.

/E:examplepath The file name and path of the example database
file.

[?password] The example database file’s password

/L: localepath The Locale (.ENV) file used to specify an
alternate collating sequence.

/H If specified, the utility uses the header
information in the source file.

/K If specified, the utility rebuilds all keys for the
database.

/P If specified, the user is prompted for each
parameter even if they are supplied on the
command line.

/O If specified, the file uses OEMTOANSI and
ANSITOOEM to determine the collating
sequence. See Internationalization in Chapter
10 of the Language Reference.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Using the Utility in your Application

There are some issues to consider before allowing the utility to run.

❏ The database file should NOT be open when running the
utility. Ensure that the file is closed before allowing the user to
start the utility.

❏ To prevent access during the recovery process is completed,
the utility locks the file automatically.

❏ It is more efficient and safer to allow the application to rebuild
the KEYs (by omitting the /K parameter in the recovery). It is
also a good way to check the status of a recovery.

Running the TopSpeed Database Recovery Utility

There are basically two methods you can use from a RUN() statement:
Using the first method, you omit the destpath parameter so the original
(source) file is overwritten. This requires an Example file.

In the Application Generator:

11111. In the Actions dialog for a button or menu item, choose Run a
Program from the drop down list.

22222. In the Program Name entry box, specify TPSFIX.EXE.

33333. In the parameters entry box, specify the parameters (see Command
Line Parameters above).

For Example:

TPSFIX.EXE Datafile.TPS /E:Example.TPE /H

In Embedded Source Code:

RUN(‘TPSFIX.EXE Datafile.TPS /E:Example.TPE /H’)

This recovers the “datafile.TPS” file using the “Example.TPE” file as an
example for the table and key layouts, does not rebuild the keys, and uses
the header information in the original file. The original file is saved to a
backup file with an extension of TP1 through TP9. Each time the utility
is executed, the numeric portion of the extension is incremented.

The second method requires two lines of embedded source code but
gives you control over the renaming process. You insert the source code
in the Accepted Embed point for the Menu Item or button.

APPENDIX B DATABASE DRIVERS—TOPSPEED DATABASE FILES

For example:

COPY(datafilelabel, ‘Datafile.OLD’) ! copies the original file
! to Datafile.OLD

RUN(TPSFIX Datafile.OLD Datafile.tps /H) ! Runs the utility using the
! renamed file as
! the source and the original
! name as the target

This copies the datafilelabel file to DATAFILE.OLD, recovers the file
and writes it to DATAFILE.TPS using the header information in the
original file.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

ODBCODBCODBCODBCODBC

ODBC (Open DataBase Connectivity) is a
Windows “strategic interface” for accessing data
from a variety of Database Management
Systems (DBMS) and data file formats, across a variety of networks and
platforms. ODBC offers the same end result as the file driver libraries
which ship with Clarion for Windows—file driver independence—
though in a somewhat different manner.

The ODBC standard was developed and is maintained by Microsoft,
which publishes an ODBC Software Development Kit (SDK), geared for
use with its Visual C++ product. ODBC support is another way in which
Clarion for Windows provides an extensible platform for you to create
applications.

ODBC PRO’S AND CON’S

Using ODBC offers the following advantages:

◆ ODBC is an excellent choice in a Client-Server environment,
especially if the Server is a native Structured Query Language (SQL)
DBMS. It allows you to add Client-Server support to your
application, without having to do much more than choose a file
driver. ODBC was specifically designed to create a non-vendor-
specific method of connecting front end applications to back end
services. Via ODBC, the Server can handle much of the work,
especially for SQL JOIN and PROJECT operations, thereby
speeding up your application.

◆ Existing ODBC drivers cover a great many types of databases. There
are ODBC drivers available for databases for which Clarion may not
have a native driver—for example, for Microsoft Excel and Lotus
Notes files.

◆ ODBC is already widespread. Major application suites such as
Microsoft Office install ODBC drivers for file formats such as dBase
and Microsoft Access. Keep in mind that many ODBC back end
drivers have been updated and you should obtain the latest releases.

APPENDIX C THE OPEN DATABASE CONNECTIVITY DRIVER

◆ ODBC is platform independent. One of Microsoft’s prime objectives
in establishing ODBC was to support easier access to legacy
systems, or corporate environments where data resides on diverse
platforms or multiple DBMS’s. As long as an ODBC driver and
back end are available, it doesn’t matter whether you use Microsoft’s
NetBEUI, SPX/IPX, DECNet or others; your application can
connect to the DBMS and access the data.

Given that there are many drivers available, and that the standard was
developed by the company that developed Windows, you might consider
using ODBC as the driver of choice for all your Windows applications.
Yet, when deciding whether to use an ODBC driver or a Clarion for
Windows native database driver, you must also consider possible
disadvantages:

◆ Unfortunately, ODBC adds a layer—the ODBC Driver Manager—
between your application and the database. When it comes to
accessing files on a local hard drive, this generally results in slower
performance. The driver manager must translate the application’s
ODBC API call to an SQL statement before any data access.

ODBC uses SQL to communicate with the back end database.
Although this can be very efficient when communicating with
Client/Server database engines, it is normally less efficient than
direct record access when using a file system designed around single
record access, such as xBase or Btrieve.

◆ The information required by the ODBC database manager to
connect to a data source varies from one ODBC driver to another.
Unlike the selection of Clarion file drivers, where file operations are
virtually transparent, you may need to do some work to gather the
information required to use a particular ODBC driver. This chapter
provides a few tips that might make it easier, and many ODBC
drivers come with a Help (.HLP) file which documents special
settings (usually stored in ODBC.INI); but the burden is on you to
solve any problems with third-party ODBC drivers.

◆ ODBC is not included with Windows. When distributing your
application, you’ll need to install the ODBC drivers and the ODBC
driver manager into the end user’s system, if the end user doesn’t
have them already. This requires the ODBC SDK from Microsoft. In
some cases, the back end server may have already provided a
distribution kit which installs the ODBC driver on the workstation.

◆ The normal Microsoft setup program that installs the ODBC driver
manager adds an applet to the end user’s Control Panel window for
managing ODBC. It’s very easy for an end user to use this tool to
change the settings in the ODBC.INI file. The end user can
unwittingly remove or modify the settings for the back end ODBC
driver which would make it impossible for your application to

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

connect to the data file. Additionally, since most ODBC drivers store
the data directory in ODBC.INI, it’s very easy for the end user to
change it, again introducing a possible problem for your application.

Given the pros and cons, we recommend using the native Clarion for
Windows file drivers when both a native driver and an ODBC driver
exist for the same file format.

HOW ODBC WORKS

When you use ODBC to access data, four components must cooperate to
make it work:

◆ Your application calls the ODBC driver manager, and sends it the
appropriate requests for data, via the ODBC API.

Clarion for Windows does this for you transparently, using either the
CWODBC16.DLL (16-bit) or the CWODBC32.DLL (32-bit)
application extension. When hand-coding, be sure to include this
library in the project. When distributing your application, be sure to
include this file with your .EXE file (unless you use produce a “one-
piece” .EXE).

◆ The ODBC driver manager receives the API calls, checks
ODBC.INI for information on the data source, then loads the ODBC
“back-end” driver.

The actual “interface” to the driver manager is a file called
ODBCADM.EXE, which the Microsoft setup program places in the
\Windows\System directory. This is the ODBC Administrator, which
then loads other libraries to do its work.

◆ The ODBC “back-end” driver is another library (.DLL) which
contains the executable code for accessing the data.

Various third-parties supply “back-end” drivers. For example, Lotus
Development Corp. supplies the ODBC driver for Lotus Notes.
Microsoft Office distributes an ODBC SDK containing drivers for
most of their database products.

◆ The data source is either a data file (usually when ODBC is used for
local data access), or a remote DBMS, such as in a case where
ODBC is used to access an Oracle 7 database.

The data source has a descriptive name; for example, “Microsoft
Access Databases.” The name serves as the section name in the
ODBC.INI file.

APPENDIX C THE OPEN DATABASE CONNECTIVITY DRIVER

The ODBC driver manager must know the exact data source name so
that it can load the right driver to access the data. Therefore, it’s
vitally important that you know the precise data source name.

ADDING ODBC SUPPORT TO YOUR APPLICATION — THE BASICS

Adding ODBC support to your application only requires choosing
Clarion’s ODBC driver and providing the parameters to pass to the
ODBC driver manager. You provide the parameters in the OWNER and
NAME attributes of the FILE declaration. When creating a Data
Dictionary for ODBC tables, importing the file definitions provides this
information in the appropriate fields.

The following introduces the basics, as approached from the Data
Dictionary Editor. Of course, you must also be sure that the field data
types in your dictionary match the variable formats supported by the
DBMS you’re connecting to.

1. Create a new Dictionary file.

2. Choose File ➤ Import File .

The Select File Driver dialog appears.

3. Select ODBC from the drop down list, then press the OK button.

The Data Sources dialog appears. This is similar to the ODBC
Administrator’s interface. If the data source has not yet been defined,
you can add it by pressing the New button.

4. Highlight the desired Data Source, then press the Next button.

5. If the Data Source has password protection, the Logon dialog
appears. Provide the User ID and password, then press the OK
button.

If the file contains multiple tables, the Tables for ... dialog appears.

6. Highlight the desired table, then press the Finish button.

The file definition is imported and the File Properties dialog
appears allowing you to modify attributes, if you choose.

Notice the fields in the File Properties dialog that it has filled in
during the import:

Name: This is extracted from the Table name as defined
in the ODBC database. You may modify this, if
desired. It is used as the Clarion label in your
source code.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Prefix : This defaults to the first three characters of the
table name, you may modify this if desired.

Owner Name The ODBC data source name, and optionally,
the user ID, and password, separated by
commas. Some databases require additional
connection information. This information
follows the password and is separated by
semicolons, using the syntax:
keyword=value;keyword=value.

For example, when accessing a Sybase database,
this would appear as :

A Data Src,UserID,PassWord,DATABASE=DataBaseName; APP=APPName

The data source name is the section name in the
ODBC.INI file which stores all the information
necessary for the ODBC manager to load the
driver and access the data. The Application
Generator will add the information to the
OWNER attribute of the file declaration:

OWNER(DataSourceName, UserID, Password)

Full Pathname : The import process places the table name only
in this field. The ODBC driver retrieves the
physical file name from ODBC.INI.

This places the file or table name in the NAME
attribute of the file declaration:

NAME(DataFileName) or NAME(TableName)

The remainder of the attributes depend on your preferences and your
application.

7. Repeat the last six steps for each table in the database.

APPENDIX C THE OPEN DATABASE CONNECTIVITY DRIVER

USING EMBEDDED SQL

You can use Clarion's property syntax to embed SQL statements in your
program code by using PROP:SQL naming the file as the target. This is
only appropriate when using an SQL file driver, such as the ODBC
driver.

You may embed any SQL statements supported by the back-end SQL
server. If you issue an SQL statement that causes a result set to be
returned (such as an SQL SELECT statement), you use NEXT(file) to
retrieve the result set (one row at a time) into the file's record buffer. The
FILEERRORCODE() and FILEERROR() functions will return any error
code and error string set by the back-end SQL server.

You may also query the contents of PROP:SQL to get the last SQL
statement issued by the file driver.

Example:

SQLFile{PROP:SQL} = 'SELECT field1,field2 FROM table1' |
& 'WHERE field1 > (SELECT max(field1)' |
& 'FROM table2'

!Returns a result set that you
! get one row at a time using
! NEXT(SQLFile)

SQLFile{PROP:SQL} = 'CALL GetRowsBetween(2,8)'!Call a stored procedure

SQLFile{PROP:SQL} = 'CREATE INDEX ON table1 (field1, field2 DESC)"

!No result set

SQLString = SQLFile{PROP:SQL} !Get last SQL statement the driver issued

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

SENDING AN SQL STATEMENT

With the ODBC driver, you can utilize the Clarion SEND function to
send an SQL command to an external DBMS.

Use the SEND function only for operations which do not return a result
set. Normal file operations which do return a result set require Clarion
language statements or embedded SQL (see previous section).

For example, you can support network maintenance functions via the
SEND command:

ReturnValue=SEND(FileLabel, ‘GRANT SELECT ON mytable TO fred’)

DRIVER LIMITATIONS

In addition to (third party) driver specific limitations, the following
limitations apply to all ODBC connections.

◆ The NOCASE attribute on keys is not supported.

◆ International sorts are not supported.

◆ EOF(), BOF(), HOLD, RELEASE, LOCK, UNLOCK, STREAM,
FLUSH, COPY, RENAME, and WATCH are not supported.

◆ MEMO’s are not supported.

◆ You must use SET followed by NEXT for processing in physical
order. You cannot use PREVIOUS. POSITION and RESET are not
supported for physical order.

TESTING YOUR ODBC APPLICATION

Here are two tips for use when developing your ODBC application.

The ODBC driver manager can create a log file documenting all ODBC
calls. It includes the actual SQL statements made by the driver to the
data source, and includes any errors posted.

Additionally, you can use the FILEERROR() function to trap ODBC
“back-end” driver error messages it passes back to the Clarion for
Windows ODBC driver. The following sections tell you how to take
advantage of these tips.

APPENDIX C THE OPEN DATABASE CONNECTIVITY DRIVER

ODBC Log Files

There are different log files you can produce. One is produced by the
Clarion ODBC driver, the other through the ODBC Driver Manager.

The ODBC Driver Manager’s logging writes every ODBC call and the
SQL statements they generate to disk, as the calls are made. The Clarion
ODBC driver only logs errors that occur. This allows you to match calls
to SQLError in the ODBC manager’s log to actual error messages. This
slows down the process considerably, so this should only be activated
during testing. Additionally, the log file can grow to large proportions
very quickly, so you must turn it off and delete the file after using it.

Besides “snooping” on the actual SQL statements generated by the
driver, you can zero in on any errors. If the application was unable to
connect, you can open the log file using the Write or WordPad applet
(the file is usually too big for Notepad). Scroll to the very bottom of the
file, then work up until you find the word “SQLError.”

To enable Clarion ODBC driver logging:

You can enable logging on a system-wide basis, on a per-file basis, or on
demand using a SEND() command.

For system-wide logging:

1. Add the following to your WIN.INI file:

[CWODBC]

Trace=1

TraceFile=[name of trace file]

For file logging:

1. In the File Properties dialog, in the Dictionary Editor, add the
following in the Driver Options entry box:

/LOGFILE=filename.ext

where filename.ext is the name of the logfile you wish to create.

For logging on demand:

1. Use a SEND() command at the appropriate point in your code, using
the following syntax:

SEND(file,‘/LOGFILE=filename.ext’)

where file is the label of the data file and filename.ext is the name of
the logfile you wish to create.

To turn logging off:

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

1. Use a SEND() command at the appropriate point in your code, using
the following syntax:

SEND(file,‘/LOGFILE’)

where file is the label of the data file

To enable ODBC Administrator logging:

1. Start the ODBC administrator.

You can do so by either running the ODBCADM.EXE file in the
\Windows\System directory, or by DOUBLE-CLICKING the ODBC icon
in Control Panel.

2. Press the Options button in the Data Sources dialog.

3. Check the Trace ODBC Calls box.

4. Optionally uncheck the Stop Tracing Automatically box if you
think you need to test connecting more than once.

It’s common to test several times before pinning down the error.

5. Press the Select File button and name a file to log to.

The default is called SQL.LOG.

6. Switch to your program and begin testing.

After the errors occur, open the log file and examine it. Remember to
turn off the Trace ODBC Calls box when done testing.

APPENDIX C THE OPEN DATABASE CONNECTIVITY DRIVER

MISCELLANEOUS ODBC NOTES

You can use Clarion’s property syntax to save a data source’s connection
information to a variable by using {PROP:ConnectString} with the file
label as the target.

Example:
AFileOwner STRING(256)
AFile FILE,DRIVER(‘ODBC’),OWNER(AFileOwner)
AFileOwner=’DataSource’
OPEN(Afile)
IF NOT ERRORCODE() THEN
AFileOwner=AFile{PROP:ConnectString}

You can also use Clarion’s property syntax to set a time limit (TimeOut)
for an ODBC database’s login screen. If the user does not respond in the
allotted time, the connection will fail and the login is aborted. The
default is to wait indefinitely for user input. Not all back ends support
this feature and may ignore your value.

Example:

AFile{PROP:LoginTimeOut}=60 !allow 1 minute for login

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

GGGGGETETETETETTINGTINGTINGTINGTING S S S S STTTTTARARARARARTEDTEDTEDTEDTED W W W W WITHITHITHITHITH DDE DDE DDE DDE DDE

This chapter introduces Dynamic Data
Exchange (DDE). For a complete discussion
of Clarion and DDE, see the Language
Reference. This appendix is meant only to provide a description of what
DDE can do, to demonstrate that it’s easy to implement, and to suggest a
tip or two to help you explore DDE.

DDE is a Windows Inter-Process Communication (IPC) protocol. A
DDE “conversation” consists of two applications trading messages.
Within the DDE conversation, one application acts as the client, the
other as the server.

The application which starts the conversation, requesting data or services
from the other, is the client. The contacted application is the server. The
server must “register” with Windows that it has server capability.

Clarion for Windows allows you to create both DDE clients and DDE
servers. An application can be both. In fact, your application can act as
both a client and server at the same time, though it requires separate
DDE conversations.

CAPABILITIES

As a DDE client, your application can:

◆ Initiate a DDE conversation with a DDE server via the DDECLIENT
function.

◆ Receive data from a server via the DDEREAD statement.
EVENT:DDEdata tells your application when there is data for it to
read.

◆ Send a command string to a server via the DDEEXECUTE
statement.

Many existing Windows applications allow access to their
functionality through command messages. For example, you can

APPENDIX D DYNAMIC DATA EXCHANGE

execute any Microsoft Excel macro statement by enclosing it in
square brackets and sending it as a string parameter in the
DDEEXECUTE statement.

◆ Send unsolicited data to a server with the DDEPOKE statement.

Typically, you provide the server with an “item” description, and its
value (string). For example, to place a value in a specific cell in an
Excel spreadsheet, the item is the cell address, in R1C1 format. The
value is the actual value you want to put in the cell.

As a DDE server, your application can:

◆ Check the “topic” which the client contacting your server application
specifies.

When a client contacts your server application, it specifies, in a
string, what the conversation should be about. You code your
application to check the string against a list that you specify, then
take an appropriate action when the topic matches an item in your
list.

The de facto Windows DDE “standard topics” are the current
document name, and the “System” topic. The current document is
the name of any open file associated with the server application. The
“System” topic usually triggers a return message, listing the
available “topics” which your server supports, each separated by a
comma.

◆ Provide automatic data updates via the DDEWRITE statement, when
the “mode” is set to DDE:auto.

This allows you to specify a variable. The server will automatically
send a message to the client when the value of the variable changes.

◆ Allow access to “commands.”

The server application retrieves the command string with the
DDEITEM function. You code your application to check the string
against a list that you specify, then take an appropriate action when
the command matches an item in your list.

See the Language Reference for explanations of all DDE statements and
functions. The remainder of this chapter describes these capabilities with
a generalized example, in which a Clarion DDE client sends a sample
Client request to Microsoft Excel, then sends unsolicited data to place in
a single spreadsheet cell.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

STARTING THE DDE CONVERSATION — CLIENT TO SERVER

Starting a DDE conversation is as easy as using the DDECLIENT
function. The only requirement is that both applications must already be
running to open the channel.

The simplest way to ensure that the conversation takes place at run time
is to use an IF structure. The DDECLIENT function returns zero if the
server application isn’t already running. Test its return value, and use the
RUN statement to start the server application if it returns zero.

Many of the DDE procedures and functions require that you specify the
DDE channel number, which is an integer that Windows returns when
you open the DDE conversation. Create a local variable to hold the
return value. Begin at the Procedure Proper ties dialog of the procedure
you wish to contain the code for the DDE conversation.

❏ Create a variable to hold the DDE channel number:

1. Press the Data button in the Procedure Properties dialog.

2. Press the Insert button in the Local Data dialog.

3. Type Channel in the Name field.

4. Choose LONG from the Type drop down list.

5. Press the OK button to close the Field Properties dialog.

6. Press the Close button to close the Local Data dialog.

Initializing the Conversation

You must embed the code to initialize the DDE conversation, starting the
server application if it’s not already started. Assuming a menu choice in
your application begins the conversation, embed the code at a field event
associated with the Accepted event for the menu choice.

1. Choose the appropriate field event in the Embedded Source list.

2. Press the Edit button.

3. Choose the Source item in the Embedded Source dialog.

4. Press the Add button.

5. Type the following code, substituting the file name (without
extension) of the Server application for “Excel.”

APPENDIX D DYNAMIC DATA EXCHANGE

Channel = DDECLIENT('Excel','System') ! Excel re System topic
IF Channel < 1 ! If no contact made
 RUN('Excel') ! Attempt to start Excel
 Channel = DDECLIENT('Excel','System') ! And try again
ELSE
 RETURN ! Give up if no contact
END

The code example is deliberately simplistic; it would be more
efficient to LOOP through the attempt to contact twice, then warn
the end user of the failure.

The code attempts to open a DDE conversation with Excel named as
the server. The DDECLIENT function returns a value corresponding
to the channel; it doesn’t matter what the channel number is. If it’s
less than one, it failed. You must therefore start the server, and try to
open the conversation again.

The second parameter of the DDECLIENT function is the DDE
“Topic.” It tells the server what the DDE conversation is “about.” In
most cases, the topic is a file name. In this case, the code names the
“System” topic, which tells Excel the conversation is not regarding a
particular document file.

Sending DDE Commands

Once the DDE channel is open, you can then use the DDE functions to
send commands, data, or requests to the server.

The example code below sends a command to Excel to open a new file
and save it under a specified file name. This is a common DDE task
when working with commercial applications. Often, the server
application allows access to “document” functions only when you
specify a document name in the DDECLIENT function. The document
name must be a file that already exists.

In this particular case, to execute any “document” actions, such as
entering a value in a cell, Excel (and many other applications) require the
DDE channel “topic” to be the name of document. Therefore, if your
application is providing new data it wants the server to save in a new
document file, your application:

❏ Opens a conversation about the “System” topic.

❏ Sends a command asking the server to save a document file under a
specified name.

❏ Closes the conversation.

❏ Opens a second conversation with the server, this time specifying the

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

newly created file’s name as the topic.

❏ Sends the “unsolicited” (because the server didn’t ask for it) data and
then tells the DDE Server (Excel) to execute commands or other
requests for data that apply to the file.

❏ Closes the conversation.

The following therefore should execute only if the example code
previously shown was successful.

DDEEXECUTE(Channel,'[NEW(1)]') ! Excel's File/New command

The DDEEXECUTE statement takes the DDE channel number as its
first parameter, and the command string as the second. Excel
requires you to enclose all DDE commands in square brackets (a
standard DDE convention). This command creates a blank
spreadsheet.

The Excel command string enclosed by the square brackets is an
Excel macro statement. Excel, and many other applications allow
you to send a macro statement via the DDEEXECUTE statement. In
this particular case, you don’t have to know the name of the open
Excel file to execute the statement.

Tip: Many commercial applications with their own macro
languages allow you to both record and edit macros. Use the
application to make a “dry run” of the actions you need it to
execute, with its macro recorder turned on. Edit the resulting
macro, and use the clipboard to copy each macro statement to
your embedded source window. Put each macro statement in
the second parameter of the DDEEXECUTE statement, and
you can be assured of the correct syntax for the DDE
command!

2. In the next embedded source line, tell Excel to save the new (blank)
sheet under a name that you specify.

DDEEXECUTE(Channel,'[SAVE.AS("DDE_TEST.XLS",1,"",FALSE,"",FALSE)]')

Knowing the name allows you to close this channel, then open
another specifying the file name as the topic. Note that the Excel
command string requires double-quote marks.

3. Terminate the channel started under the “System” topic.

DDECLOSE(Channel) ! Close first DDE channel

APPENDIX D DYNAMIC DATA EXCHANGE

Sending Data from Client to Server

To continue the example, to send data to Excel, you need to open another
DDE conversation, this time with the newly created file name as the
topic:

1. Open the DDE channel and name the file as the topic.

Channel = DDECLIENT('Excel','DDE_TEST.XLS')
! New channel under known file name

❏ To place data in a spreadsheet cell, use the DDEPOKE statement.

DDEPOKE(Channel,’R1C1’,’999’)

Following the successful placement of the value in the spreadsheet, you
could then send further Excel macro statements using DDEEXECUTE.
This would allow you to send additional spreadsheet data, highlight a
range, then tell Excel to draw a chart.

You’ll find all the DDE commands and functions in their own section in
the Language Reference.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

MMMMMAKINGAKINGAKINGAKINGAKING API C API C API C API C API CALLSALLSALLSALLSALLS

This appendix provides an introduction to
Application Programming Interface (API)
calls. This appendix is meant only to provide
an outline of what API calls are, what they do, and to provide some basic
examples to get you started.

API calls provide a method for your program to call functions external to
your application. In other words an API call is simply calling a function
from someone else’s dynamic link library (DLL). A DLL is a file that
contains executable code that is linked into your .EXE at runtime. You
can use API calls to implement Object Linking and Embedding (OLE)
and multimedia processing in your applications.

Generally, making API calls from Clarion involves two steps:
prototyping the API functions, and linking the API functions into your
program. However, many Windows API calls are already linked for you.
See Linking API Functions below.

PPPPPROROROROROTTTTTOOOOOTTTTTYPINGYPINGYPINGYPINGYPING API F API F API F API F API FUNCUNCUNCUNCUNCTIONSTIONSTIONSTIONSTIONS

Each API function you wish to call must first be prototyped in the
Clarion MAP structure. Functions written in a language other than
Clarion can be referenced in a Clarion program by creating an equivalent
Clarion prototype. The prototypes are placed in a MODULE structure
which identifies the name of the DLL's library as the MODULE
parameter. For example, if the DLL name is WIN32.DLL then the
module structure and prototype for the GetWindowsDirectory function
is:

MAP
MODULE('WIN32.LIB')
GetWindowsDirectory(*CSTRING,USHORT),USHORT,RAW,PASCAL

END
END

APPENDIX E MAKING API CALLS

In order to proceed with your prototyping, you will need a technical
reference describing the DLL’s functions, purposes, and parameters. For
Windows API calls, we have provided some prototype examples in
C:\CW15\LIBSRC\WINDOWS.CLW. You may also want to read How
to use DLLs not created in Clarion for Windows in the Frequently Asked
Questions section of Clarion’s on-line help. See also Function and
Procedure Prototypes in the Language Reference.

There are several issues to consider when creating Clarion prototypes
which depend upon a DLL's source code language. A primary
consideration is finding equivalent data types between the two
languages. You can determine equivalent data types by considering the
underlying machine representation of the data. For example, the Clarion
data type SREAL stores a four-byte signed floating point in Intel 8087
format, while a BFLOAT4 stores a four-byte signed float in Microsoft
Basic format.

Here are some Clarion and C or C++ data type equivalents:

C/C++ Clarion
 unsigned char BYTE
 short SHORT
 unsigned short USHORT
 long LONG
 unsigned long ULONG
 float SREAL
 double REAL

 struct { Struct1 GROUP
 unsigned long ul1; ul1 ULONG
 unsigned long ul2; ul2 ULONG
 } Struct1; END

A second important prototyping consideration is the function calling
convention used by another language. Clarion provides support for three
different calling conventions: PASCAL, C, and TopSpeed’s Register
Based.

LLLLLINKINGINKINGINKINGINKINGINKING API F API F API F API F API FUNCUNCUNCUNCUNCTIONSTIONSTIONSTIONSTIONS

In order to call an API function, you must first link the function into
your program. This can be accomplished in several ways. Some
functions (WIN16.LIB and WIN32.LIB) are automatically linked. Other
.DLL functions must be explicitly linked from a corresponding .LIB file.
Finally, functions can also be dynamically linked using Clarion’s CALL
function.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

WindoWindoWindoWindoWindows API Fws API Fws API Fws API Fws API Functionsunctionsunctionsunctionsunctions

From a Clarion Language perspective, API calls can be divided into two
categories: Windows API calls and other API calls. Windows API calls
are calls to the functions that live in the three main Windows libraries
(USER.EXE, GDI.EXE and KERNEL.EXE).

Because the Clarion Language makes extensive use of Windows API
calls, many Windows API functions are already linked into Clarion’s
runtime libraries. This means you can make Windows API calls from
your Clarion programs simply by prototyping and calling. The linking is
already done for you.

Clarion ships C:\CW15\LIB\WIN16.LIB and
C:\CW15\LIB\WIN32.LIB with this release so that references to these
functions can be resolved during the compile and link process. Many
windows-based technical references or Windows API Bible can provide
information on the functions available in these Windows libraries.

Here is an example of how to call a Windows API function:

PROGRAM
MAP
MODULE('WIN16.LIB')
MessageBox(USHORT,*CSTRING,*CSTRING,USHORT),PASCAL,RAW

END
END

Caption CSTRING(18)
MessageText CSTRING(32)

CODE
Caption = 'Title'
MessageText = 'This is the text'
MessageBox(0,MessageText,Caption,30)

APPENDIX E MAKING API CALLS

Other API FOther API FOther API FOther API FOther API Functionsunctionsunctionsunctionsunctions

For API functions not in WIN16.LIB or WIN32.LIB, you must have a
library file (.LIB) that corresponds to the .DLL. Once you have a .LIB
that corresponds to the .DLL, add the .LIB to your Project File so that
you can resolve the external reference during the compile and link
process. Prototype the functions your application calls, then compile and
link as usual. The function can then be dynamically linked into your
program at runtime.

Creating a .LIB from a .DLL

Making and using a .LIB that corresponds to a .DLL can be
accomplished through the following steps:

1. Create an Export (.EXP) File for the DLL.

2. Create a Library (.LIB) File for the DLL.

3. Reference the Library (.LIB) File in the Project System.

Create an Export File for the DLL

The TopSpeed Tech Kit includes a program (TSIMPLIB.EXE) that can
be used to create .LIB files from .DLLs. The TopSpeed Tech Kit ships
with TopSpeed C, C++, Modula-2, and Pascal.

You can also extract the set of accessible DLL function names from a
DLL by using the EXEHDR.EXE DOS command line utility program.
This program appears on most DOS diskettes earlier than version 6.0. If
this utility program is not available then some other utility program or
method may be substituted which provides the same list of names.

Append the extracted function names (stripped of any surrounding text)
to the export file header information provided below. Substitute the
appropriate DLL name for the word “dllname” on line 1 of the header
information. Save the Export file under the same file name as the DLL
with the extension .EXP.

--------------------- Start of EXPORT File -----------
LIBRARY dllname
CODE MOVEABLE DISCARDABLE PRELOAD
DATA MOVEABLE SINGLE PRELOAD
HEAPSIZE 1024
STACKSIZE 32678
SEGMENTS
 ENTERCODE MOVEABLE DISCARDABLE PRELOAD
EXETYPE WINDOWS
EXPORTS
 function and function names go here (one name per line)
--------------------- End of EXPORT File -------------

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Create a Clarion for Windows Library .LIB File for the DLL.

Once you have created an Export (.EXP) file, you can create a .LIB file
for the DLL using the #implib project system command. The #implib
command creates or updates a Library (.LIB) file based on the
information contained in an Export (.EXP) file. The command's syntax
is:

#implib <library file name> <export file name>

where

<library file name> is the DLL name with the extension .LIB

<export file name> is the DLL name with the extension .EXP.

Using a text editor, create a Clarion Project File (.PRJ) and enter a single
line in the file containing the #implib project system command with the
appropriate parameters. Note the #implib must be in lowercase. Save the
project file under an appropriate name (i.e. the DLL file name with the
.PRJ extension).

Under Clarion for Windows, set the project file you just created as the
current project:

1. Choose Project ➤ Set.

2. Select the project file and press the OK button.

3. Make the project by pressing the Make button on the Toolbar.

If the Make was successful and the Library (.LIB) file was created then a
confirmation window appears with a green check mark in the bottom-
right corner and appropriate completion messages display. The Library
(.LIB) file is ready to use.

Reference the .LIB File in the Project System.

Place the Library (.LIB) file in the Project Tree (under ‘Library and
Object files’) of any Project when you use the associated DLL's
functions. During the link phase of the Make, the linker recognizes any
referenced functions in the Library (.LIB) file.

APPENDIX E MAKING API CALLS

The CThe CThe CThe CThe CALL FALL FALL FALL FALL Functionunctionunctionunctionunction

If you do not have a .LIB file that corresponds to the .DLL you wish to
access, and cannot make one, the Clarion CALL function gives limited
access to .DLL functions without explicitly linking the function. There is
more overhead incurred with the CALL function than with calling the
API function directly. The CALL function uses an intermediate API
function to access the target API function, and requires that you know
where in the .DLL the desired function resides. You cannot pass
parameters to the CALLed function, nor can it return any values. See the
Language Reference for more information.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

MMMMMULULULULULTITITITITI-P-P-P-P-PROGRAMMERROGRAMMERROGRAMMERROGRAMMERROGRAMMER D D D D DEVELEVELEVELEVELEVELOPMENTOPMENTOPMENTOPMENTOPMENT

Clarion for Windows’ modular approach to
source code management, its procedure-
oriented language, and its ability to produce
.DLL and .LIB files allows your team to split the work on big
programming projects.

Our recommended methods for group development assume the team is
linked by a LAN which supports the ability to grant read-only or read-
write privileges to individual developers. It doesn’t matter whether the
LAN is peer-to-peer or a more traditional network operating system. We
also assume the project will have a Team Leader or Project Manager to
coordinate the overall efforts of the team. Finally we assume, as per our
license agreement, each Clarion for Windows programmer has a licensed
copy of Clarion for Windows.

The first step to prepare for a team-development project is to create a
data dictionary available to all developers, but which only the team
leader may edit. An Application Generator option (Multi user
Development check box under Setup ➤ Application Options)
provides support for opening the Data Dictionary and REGISTRY.TRF
in read only mode, so that many developers working with separate .APP
files can work with the same dictionary. All team members should share
a common REGISTRY.TRF and a single set of template source files. The
Team Leader should be responsible for the dictionary and the template
set.

Once the data dictionary is created, there are three basic approaches your
team can take to utilize Clarion for Windows as a group development
tool:

◆ Procedure-oriented:

The team divides the application into procedures, as listed in the
Application Tree. These should be organized around the various
windows, dialog boxes, menu items, and command buttons that form
the user interface.

The Team Leader prepares a “shell .APP,” (or master) upon which all
the others build. Each team member receives a copy of the .APP file,
then works on a procedure (or procedures). The Team Leader

APPENDIX F MULTI-PROGRAMMER DEVELOPMENT

imports the completed procedures into the master .APP file for
compiling. This approach is suitable for small to medium size
projects.

◆ Module-oriented:

The team divides the application into its target-file-level components
(.DLL’s, .LIB’s, and executables). Each team member creates a
single target file. Separate project files (.PRJ) compile the individual
components. A master project file may include all the other project
files, building all target files at once. This approach is suitable for
medium to large size projects.

◆ Sub-Application:

The team divides the application into its target-file-level components
(.DLL’s). Each team member creates a single application or
Dynamic Link Library (.DLL). A master application calls each
.DLL. This approach is suitable for medium to large size projects.
This method provides the most flexibility and minimizes version
control concerns.

ENABLING & PHYSICALLY ORGANIZING TEAM PROJECTS

This section describes how to set up the Clarion Development
Environment at each workstation, and where to store the files necessary
for all three group development approaches:

1. Create the data dictionary in a shared directory.

All team members working on the project must have read rights to
the directory. Those permitted to edit the dictionary should also have
write privileges, though it may be best that only the Team Leader be
allowed to edit it.

2. Create a shared directory for resource files.

Provide read rights for all team members to icon, cursor, bitmap, and
other resource files.

3. Within Clarion for Windows, at each workstation, choose Setup ➤
Application Options.

The Application Options dialog appears.

4. Check the Multi User Development checkbox.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

This specifies that when working in the Application Generator, the
copy of Clarion for Windows residing at each workstation opens the
dictionary file on the network in read-only mode. The purpose is to
ensure that no one accidentally deletes a field, file, or key needed by
other team members. For this reason, we recommend that only the
Team Leader have write privileges to the directory containing the
dictionary. To modify the dictionary, all team members must close
all applications which use the dictionary. The Team Leader must
uncheck the Multi User Development box in order to modify the
dictionary and ,upon completion, check the box again.

5. Press the OK button to close the dialog.

6. Create a directory on each workstation’s local drive to hold each
team member’s individual .APP and source files.

The real work is planning how to split the development project,
which is what the remainder of this chapter discusses.

Note: If your application uses external .DLLs, all File definitions
and all Global variables and structures must be declared in a
.DLL (not the .EXE) and exported. See the Sub-Application
Approach for more information.

PROCEDURE ORIENTED APPROACH

The Application Generator allows you to import and export procedures
from other .APP files. With careful management, a Team Leader can
organize development so that each team member can compile and test a
copy of the application which includes the parts he or she works on.
Each views the entire menu and the application’s most important dialog
boxes, yet executes only the procedures for which that team member is
responsible.

To accomplish this, each team member requires a copy of a “master”
.APP file, containing the MAIN procedure (which would most likely be
an Application Frame procedure), plus other procedures inserted below it
as “ToDo” procedures. Each team member then “plugs in” the
procedures he or she is responsible for.

To assemble the complete application, using the File ➤ Import from
Application command, the Team Leader imports each finished
procedure into the master .APP file.

The following outlines a possible implementation of the procedure
oriented approach:

APPENDIX F MULTI-PROGRAMMER DEVELOPMENT

1. Create the data dictionary and set up the workstations as described
above.

2. Create a “master” .APP file in a directory to which only the Team
Leader has write privileges.

3. Within the .APP file, edit the MAIN procedure’s most important
user interface elements and declare its global variables.

The user interface elements may include any dialog boxes or
windows of particular importance to the application. As you specify
procedure calls to menu items and/or toolbar controls, the
Application Generator automatically adds “ToDo” procedures the
application tree.

4. Save and copy the .APP file to each team member’s local drive.

If the team prefers, you can rename each copy; for example,
MASTER01.APP, MASTER02.APP, etc. or JIM.APP, JANE.APP,
etc.

5. Team members work on the procedures for which they are
responsible, using their own copy of the .APP file.

With the .APP file containing the complete user interface, each team
member can compile an interim build locally, to test their own
procedures while under development.

6. Each team member synchronizes their local directory with an
equivalent directory on the network at the end of each work session,
or copies renamed .APP files to a “master” directory.

7. To update the master .APP file with the latest work from a developer,
the Team Leader replaces a “To Do” procedure in the Application
Tree with a completed procedure in a team member’s .APP by
importing it. The Team Leader chooses File ➤ Import from
Application , indicating the same procedure in the .APP file in the
developer’s network directory.

Any sub-procedures added by the team members will be brought
along as new “To Do” procedures. When the Team Member
completes these, they can be imported in the same manner. As the
Team Leader’s master .APP file “grows”, it can be copied back to
team members’ individual directories (but only if all the work done
by the individual team member was imported). This way, each team
member has access to all the work completed by other members of
the team. Keep in mind that each of the other member’s modules
will need to be compiled on the member’s local drive.

If the Team Leader is also a team member—i.e., also responsible for
coding procedures—it’s best to maintain a completely separate
directory and copy of the master .APP file for that work.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

8. After importing the updated procedure, the Team Leader checks to
see if it added any new “To Do” procedures to the tree, and imports
those, if ready.

Communication at this step is vital. In fact, based on E-Mail
messages within the team, the Team Leader could optionally import
“works in progress.”

9. The Team Leader compiles the project, so that it now includes each
team member’s work added through importing procedures.

10. The Team leader repeats the last three steps on a periodic basis until
all work by all team members is complete, and the entire application
can be tested.

MODULE ORIENTED APPROACH

With this approach, each team member creates a separate target file. This
requires splitting the application into a “Main” executable and
“secondary” executables or dynamic link libraries. The individual team
members maintain separate project files (.PRJ) for each component. The
Team Leader creates a master project file to build all target files at once.

The key to successfully implementing this strategy is extensively pre-
planning the “division of labor” between the various target files created
by the application. The Notes section below provides a few helpful
suggestions.

The following outlines a possible implementation of this strategy:

1. Create the data dictionary and set up the workstations as described
above.

2. Each team member creates their own .APP and .PRJ files, specifying
the dictionary file on the network as the data dictionary, and a
directory on the local drive as the default directory for the .APP file.
Each team member specifies a different target file.

One particular .APP or .PRJ file creates the executable which
launches or calls library functions or procedures in the others. To the
end user, this is the .EXE program to start when working with the
complete application.

3. Each team member synchronizes their local directory with an
equivalent on the network at the end of each day.

4. The Team Leader creates a master .PRJ file which includes all the
other .PRJ files, in a network subdirectory.

APPENDIX F MULTI-PROGRAMMER DEVELOPMENT

The Team Leader inserts the name of each .PRJ file (previously
copied to the network) in the Projects to Include item in the Project
Tree.

5. The Team Leader compiles the master project, which in turn
compiles all the target files one by one.

6. The Team leader repeats the last step on a periodic basis until all
work by all developers is complete, and the entire application can be
tested.

Notes on Splitting the Project

There are probably as many ways to split a project as there are projects;
this section provides a few general suggestions.

◆ If a task associated with a menu command requires extensive coding,
store it in its own external .DLL, so that only a single developer can
work on it.

A typical example might be an accounting program, which could
store all procedures and functions associated with accounts
receivable in one .DLL file, accounts payable in another, and so
forth.

◆ Organize .DLL’s by function; for example, place utility procedures
and functions such as backups and file exports in a
UTILITIES.DLL.

◆ Store user defined functions in .LIB files; distribute the compiled
.LIB files to each team member as they become available so that
each may test any functions required in their own work.

Notes on File Management

Each multi-developer project has its distinct properties, so you’ll
undoubtedly adapt the following suggestions to fit your needs:

◆ Create a subdirectory for each team member on the network drive,
either at the same level or below the one holding the data dictionary
file. Give each developer write privileges only to their own directory,
and use a network utility to synchronize the directories at the end of
the day.

This not only serves as a backup, but provides the Team Leader
access to the latest work done by all members of the team.

◆ If the application under development creates an .INI file, a copy of it
should reside in a network directory to which all team members have
write privileges, so that if anyone should need to add a variable to

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

the file, other members of the team can see it.

SUB-APPLICATION APPROACH

This section describes the steps to create a program using one main
application and several sub-applications compiled and linked as external
.DLLs. Dividing a large project into multiple .DLLs provides many
benefits:

◆ Each sub-application can be modified and tested independently.

◆ Developers can work on their portion of the project without
interfering with others on the development team.

◆ Each sub-application can be compiled as a DLL and tested in the
main program without recompiling the entire project. This reduces
compile and link time.

◆ Dynamic Pool Limits are avoided in large projects.

◆ Future updates can be deployed by shipping a new .DLL, reducing
shipping costs.

With this approach, each Team Member creates a separate .DLL that is
called by a “master” application. This requires splitting the application
into a “Main” executable and “secondary” .DLLs. The individual team
members maintain separate application files for each component. The
Team Leader creates a master application that calls the sub-applications
and a “data” application that contains (and exports) all the File
definitions and Global variables. Optionally, members can call
procedures from another member’s .DLL.

This method also requires extensive pre-planning of the “division of
labor” between the various target files created by the application. The
previous section provides a few helpful suggestions.

The following outlines a possible implementation of this strategy:

1. Create the data dictionary and set up the workstations as described
above.

2. Create a “dummy” application to store and export all data
declarations. All Global variables or structures and all file definitions
are defined (and exported) in this application. Use the following
settings:

In the Application Properties:

APPENDIX F MULTI-PROGRAMMER DEVELOPMENT

Dictionary File: The master dictionary residing on the
network.

Target Type: DLL

In the Application’s Global Properties:

Generate Global Data as External: OFF

File Control Flags

Generate All File declarations: ON

External: NONE EXTERNAL

Export All File declarations: ON

3. Team member create their own sub-application .APP files,
specifying the dictionary file on the network as the data dictionary,
and a directory on the local drive as the default directory for the
.APP file. Each team member specifies a different target file using
the following settings:

In the Application Properties:

Dictionary File: The master dictionary residing on the
network.

Target Type: EXE during the design and testing phase
DLL when releasing to the master directory.

Note: Changing the Target Type enables procedures to be
exported. Make sure that every procedure that is called by the
master application or another .DLL has the Export Procedure
check box in the Procedure Properties checked (the check
box is only available after changing the target type).

In the Application’s Global Properties:

Generate Global Data as External: ON

File Control Flags

Generate All File declarations: OFF

External: ALL EXTERNAL

All Files declared in another .App: ON

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

Declaring Module: Leave this blank

In the Application’s Module Tree:

Choose Application ➤ Insert Module and select the
corresponding .LIB for the .DLL containing the data
definitions.

One particular .APP creates the executable which launches or calls
library functions or procedures in the others. To the end user, this is
the .EXE program to start when working with the complete
application.

4. Team members synchronize their local directory with an equivalent
on the network at the end of each day.

5. Team Members release their compiled and linked .DLLs to the Team
Leader.

Each sub-application has a “dummy” frame (not exported) that calls
the sub-application’s procedures so the Team Member can test the
sub-application by compiling it as an .EXE. Once it passes testing,
the member compiles it to a .DLL by changing the Application
Properties’ Target File type to .DLL and releases the file to the Team
Leader.

Tip: If you edit the Redirection file to include “.” at the start of the
*.DLL and *.LIB search paths, Clarion will generate the *.DLL
and *.LIB files into the local sub-application subdirectory
instead of \CW15\BIN and \CW15\OBJ. This is a little safety
precaution that prevents the *.DLL and *.LIB from getting into
other Team Members’ hands before it’s ready. In addition,
adding the Master directory to the end of these search paths
enables the sub-application or main application to find the
completed LIB’s and DLL’s belonging to other sub-apps in the
master subdirectory.

6. The Team Leader copies the released .DLLs into the master directory
and creates a master .APP file which calls the entry point procedures
in the .DLLs.

The Master .APP is typically just a bare bones application with just
a splash screen and a main frame with a menu and toolbar. The
.DLLs are called at runtime so you don’t need to compile a large
Master .EXE. The Master .APP should have the same settings as the
sub-applications except that it is always compiled as an .EXE.

The master .APP should have these settings:

APPENDIX F MULTI-PROGRAMMER DEVELOPMENT

In the Application Properties:

Dictionary File: The master dictionary residing on the
network.

Target Type: EXE

In the Application’s Global Properties:

Generate Global Data as External: ON

File Control Flags

Generate All File declarations: OFF

External: ALL EXTERNAL

All Files declared in another .App: ON

Declaring Module: Leave this blank

In the Application’s Module Tree:

Choose Application ➤ Insert Module, Select External LIB,
then select the corresponding .LIB for the .DLL containing the
data definitions.

Choose Application ➤ Insert Module, Select External LIB,
then select the corresponding .LIB for the sub-application
.DLL. Repeat this step for each sub-application.

For each procedure the main application calls, edit the ToDo
procedure as follows:

Template: External template.

Module name: Select the corresponding
.LIB for the DLL drop down list.

If necessary delete any empty generated
modules.

7. The Team Leader compiles the master .APP and tests the calls to the
DLLs.

8. The Team leader repeats the last step on a periodic basis until all
work by all developers is complete, and the entire application can be
tested.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

GGGGGLLLLLOSSOSSOSSOSSOSSARARARARARYYYYY

All definitions should be considered general terms, except
where otherwise indicated. The context for definitions
marked (Clarion) pertain to the Clarion language or the
Clarion for Windows development environment. Likewise
for (SQL), which applies to generalized Structured Query
Language usage.

ACCEPT loop (Clarion) An event handling loop beginning with the ACCEPT statement. The loop
transparently processes the Windows messages and related events which affect the
application’s window. A single ACCEPT loop automatically gets end user input for all
controls within a given window.

accepted event (Clarion) An event generated when an end user interacts with a window control, such as
when moving the focus to a field, that results in the event being reported in the ACCEPT
look.

access key (Clarion) A specified key or index to set the order for processing records in a procedure.

active window The document or active window which currently has the focus; Windows sends the next
keyboard or mouse action to the ACCEPT loop of the active window.

alias An alternate name for a data file, which allows multiple, independent operations on it.
Clarion provides a separate record buffer for each alias, increasing the performance of the
separate operations.

ANSI character set Character set standardized by the American National Standards Institute. Many ANSI
characters are different then the corresponding ASCII character set. The ANSI set contains
more non-English characters. The standard Microsoft Windows character set is the ANSI
character set.

API Application Programming Interface; generally refers to the Windows API. Allows
applications to dynamically link function calls to the three main Windows libraries
(USER.EXE, GDI.EXE, and KERNEL.EXE), plus the external libraries such as
MMSYSTEM.DLL. Just about everything that every Windows program does is accomplished
via the API.

append Add a record to a data file, usually without updating a key or index.

APPENDIX G GLOSSARY

applet A small, single purpose application; applets are not necessarily stand alone executable
programs. The “programs” managed by the Windows Control Panel, for example, are called
applets, though they are actually dynamic link libraries with specialized entry points. The
accessories which ship with Windows are also known as applets.

application A computer program designed for a specific type of work; the terms “application” and
“program” are interchangeable. In general, when referring to a Windows program,
“application” is the preferable term.

application generator A program which combines prewritten, generalized executable code modules or fragments to
create an application.

application generator (Clarion) The part of the IDE which manages pre-written template procedures, obtains
customizations from the developer, and generates Clarion language source code files.

API (application programming interface) The defined set of functions provided by the operating
system for use by an application.

application tree (Clarion) An Application Generator dialog which graphically depicts the hierarchy of
procedures for an application.

application window In a Multiple Document Interface application, the parent window, usually containing no
controls, in which all child document windows appear.

array A ordered series or group of dimensioned values or data items.

ASCII character set Character set standardized as the American Standard Code for Information Interchange. The
standard IBM PC character set.

assignment statement A statement placing a value in a variable; for example, A = 6 places the value 6 in variable
“A.”

attribute (Clarion) A modifier to a data declaration which specifies an optional property.

auto-increment field (Clarion) A key field which stores a value which increases with each successive record, and
is generally not available to the end user. The application places the value in the field
immediately upon appending the record.

background priority A measure, expressed in a ratio, for the amount of CPU processing time allocated to a
program or task which does not currently have system focus. In the Windows 16-bit
environment, all multitasking is cooperative; therefore, all background processing is
dependent on all executing applications properly yielding at regular intervals.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

band view (Clarion) A specialized layout mode within the Report Formatter. Displays the contents of
each part of the report structure in separate panes.

binary memo (Clarion) A memo field suitable for holding non-ASCII contents, such as images.

bind (Clarion) A statement which allows a variable name to be used in a dynamic expression
which is assembled and processed at runtime.

bitmap A binary file representation of a graphic or picture; raster format defines the image by
absolute pixels. Popular bitmap formats supported by Clarion for Windows include .BMP,
.GIF, .ICO, .PCX, .JPG. Sometimes refers specifically to the .BMP file format, an
uncompressed, but widely supported file format.

Boolean A logical expression which evaluates to true or false, one or zero.

Border or Line Color The color designated for the outside line of a graphical control.

break field (Clarion) A field or variable monitored when processing a report structure. When the value in
the field changes while sequentially processing records, the print engine processes the next
element in the report structure (usually the group footer).

breakpoint A debugger stopping point, relative to a source or disassembly code statement. The
application executes up to the breakpoint, then halts and turns execution over to the
debugger, which can then examine variables and expressions to search for bugs.

BringWindowToTop Windows API function for forcing a window to always display on top of all other windows on
the desktop. Implemented in Clarion for Windows by the TOOLBAR attribute.

Browse A specialized list box procedure dedicated to displaying database records arranged in
columns and rows.

built-in (Clarion) Default map definitions, as provided in source code format in the BUILTINS.CLW
file.

button A control that initiates a command, or selects an option. An end user chooses a button by
clicking with the mouse.

calculated field A field created via an expression which may include one or more database fields.

APPENDIX G GLOSSARY

cascading menu A hierarchical submenu, sometimes called a child menu. Parent menus that lead to cascading
menus usually have a right-pointing triangle at the right side of the menu item, to cue the user
to the submenu.

case sensitive A characteristic indicating whether a command treats text typed with capital (uppercase)
letters differently than those typed with lower case, or a combination of both.

case structure A control structure which branches execution to a statement (or group of statements) based
upon a single condition or expression.

character string An alphanumeric data type.

check box A control consisting of a small square or diamond, in which an end user indicates a on/off,
yes/no, or true/false choice.

child window An MDI document window displaying a document or view within the main application
window.

Clarion standard date (Clarion) The number of days elapsed since December 28, 1800; the valid range is from Jan.
1, 1801 through Dec. 31, 2099.

click To place the mouse pointer on a control or window, then press and release the left mouse
button.

client A system attached to a network that accesses shared network resources.

client application A program that makes requests of a server application using a defined interface such as DDE,
RPC, or NetBIOS.

client ser ver architecture A network configuration by which linked workstations request services from a dedicated
program running on a server.

client server networking A network architecture in which shared resources are concentrated on powerful server
machines and the attached desktop systems fulfill the role of clients, making requests across
the network for centralized information.

clipboard A temporary storage area in memory for holding data, maintained by Windows.

Close To normally terminate processing of a window or file.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

code section (Clarion) The portion of source code containing executable code statements.

color dialog Standard Windows dialog for choosing color.

column (SQL) Generally refers to a list of database field contents arranged by records.

combo box A window control consisting of a synchronized edit box and list box.

command An executable code statement or program instruction.

comment Text inserted in a source code file to annotate or explain the code. Clarion language
comments begin with the exclamation point (!) character. Each comment terminates at the
end of the line it appears on.

commit Terminates a successful transaction and commits it to disk.

common file dialog A standard Windows dialog for displaying drives, directories, and file names. The Clarion
FILEDIALOG function displays the dialog and returns a file name to the calling application.

compiler directive An instruction directing a compiler to build an application to meet a certain condition.

concatenate Append two string data elements to form a longer string comprised of both.

concurrency checking The process of guarding against two users updating the same record at the same time.
Usually consists of checking the record on disk still contains the same values as when it was
first retrieved for updating.

conditional statement An IF statement which branches subsequent execution based on a logical condition.

constant A static value.

context menu See popup menu.

control A fundamental object in Windows that defines the appearance and behavior of a particular
visual element such as a menu, an entry field, or a scroll bar.

APPENDIX G GLOSSARY

control alignment The “Snap-To” behavior, as found in the Window and Report Formatters, by which you may
“line up” window and report elements.

control menu Contains commands for resizing, repositioning, or closing a window.

control properties (Clarion) Attributes which determine the appearance and functionality of a window or report
control.

cool switch The Windows procedure for switching between active applications by holding down the ALT

key and pressing the TAB key.

cooperative multitasking An operating system scheduling technique that relies on running applications to yield control
of the processor to the operating system at regular intervals.

criteria (SQL) An expression containing a condition which limits the records for processing.

current directory The default DOS subdirectory, in which Windows or DOS searches for files not identified
with a fully qualified file name.

current record (Clarion) The current database record in the record buffer.

cursor The mouse pointer. Changing the cursor “shape” can indicate the type of action or selection
the end user can effect on a given control or window.

data dictionary (Clarion) ASCII file describing the individual data files which comprise the database, their
structure, keys, relations, and other information describing how an application will process
the contents of the database.

data file Generally, a collection of data elements in an organized format, usually arranged by records
(rows) and fields (columns).

data section (Clarion) The section of source code containing variable and data structure declarations, such
as FILE, WINDOW, REPORT, and QUEUE.

data type A physical description of the type of storage supported by a variable; what sort of values it
can hold.

data validation An expression or the process of checking data against a condition prior to accepting the data
for entry into the database.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

database A structured collection of data, contained in one or more data files, plus the key files and
other information which describes the order and relations of the data elements.

database administrator (DBA) A person responsible for designing and maintaining a multi-user database system.

database definition file (*.DDF). A Btrieve file, separate from the data file, containing the database structure.
Equivalent to the header contained internally in most other PC database file formats.

database design The process of planning and describing the most efficient application or system for storing
and managing data for a specific project.

database driver A collection of functions and procedures contained in a dynamic link library, supporting low
level access to a specific database file format.

database integrity Under the relational model, database integrity consists of two general rules:

1. Each database file or table must have a primary key serving as a unique identifier for all
records.

2. When a table has a foreign key matching the primary key of another table, each value in
the foreign key must either equal a value in the primary key of the other table, or be null.

dBase f ormat PC database file format popularized by dBase III.

DBMS Database Management System: generic term for a program that enables a system to perform
all the functions associated with managing a database.

DDE Dynamic Data Exchange: a message protocol for exchanging data between Windows
applications.

debug To test, diagnose and (hopefully) solve software bugs. The Clarion debugger offers two
general modes:

1. Hard mode debugging, in which all keyboard and mouse input goes to the debugger first,
before being sent to the application. This effectively suspends all other applications which
may have been running prior to starting the debugger in hard mode.

2. Soft mode debugging, in which the debuggee runs as a normal windows application.

debugee The program being analyzed or debugged.

deep assignment (Clarion) Automatically assigns multiple components from one data structure to another,
between elements with the same labels (but different prefixes).

APPENDIX G GLOSSARY

default An assumed state or action, which the end user accepts or executes with little or no action.

default button A command button which is activated by default when the user presses the enter button.

default window position The default location at which a new window appears unless a position is specified. The top
left corner of the new window is usually below and to the right of the top left corner of the
last window, when it first appeared.

delimiter A character marking the boundaries of one database field from another.

dependent entity (SQL) A set of data elements dependent on other related entities in the database to identify
them..

desktop The screen area in which all windows, dialog boxes, and icons appear.

DETAIL structure (Clarion) The portion of a report structure which usually conveys the main data within the
printed report. The application loops through, updates, and prints the detail band controls
with the contents of all the records being processed.

dialog By convention, a window of fixed size, that is usually designed to interact with the user.

dialog unit Special fractional measurement units, based on the system font. Windows automatically
calculates the horizontal measurement unit in fourths of the average system character width,
and the vertical in eighths of character height. The net effect supports a proportional
placement of dialog box elements regardless of the resolution Windows is running in.

disabled A window, menu, or control visible but prevented from gaining focus.

document-centric design A design technique that focuses the user on documents and the information therein rather
than on the applications generating the data that combine to form the document.

document Any file which stores data associated with an application.

DOS buffer A (normally) small amount of memory maintained by the operating system for short-term
storage of data transferred to/from a disk drive. The size is set by the BUFFERS setting in the
CONFIG.SYS file, where one unit equals 512 bytes.

double-click To press and release the left mouse button twice, quickly. Executes the default action on a
selection.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

drag To press the left mouse button, then move the mouse while continuing to hold the button
down. Usually a visual cue indicates a process such as moving a selected object, or rubber-
banding a region. Releasing the button completes the action.

drag and drop To select an object in a window or dialog box, press down the left mouse button, move the
mouse while continuing to hold the button down, then release the button when the pointer is
on top of another object. When drag and drop is supported by the program(s), the action
generally indicates the dropped object is to be processed in some way by the recipient object.

driver string (Clarion) The second parameter of the DRIVER attribute. Consists of valid codes switches
that operate on file open for the particular driver.

drop down list A list box control which only displays only the current selection when closed. When the user
opens the list box, it expands to include additional choices.

dynamic link library (DLL) A library of shared functions that applications link to at runtime, as opposed to
compile time.

embedded source (Clarion) Executable code statements, written by the developer, and inserted into generated
source at predefined points within a procedure generated by the Application Generator.

enabled Normal window, menu, or control state allowing focus and/or user input.

encryption The storage on disk of data in scrambled or encrypted form, such that an unauthorized user
may not access the data in an intelligible format.

equi-join (SQL) A join which takes two database files (or tables) and creates a new, wider table
consisting of all possible concatenated records (or rows), where there are matching values in
the join fields.

event An action that is of interest to one or more software components. Triggers a Windows
message to the application’s message queue. Clarion for Windows handles most of the actual
messages internally.

event driven programming A programming technique in which the application responds to events as opposed to data.

Excel f ormat File format used by the Microsoft Excel spreadsheet application. Note: an ODBC driver
exists for this format, and is available in the Microsoft ODBC 2.0 Software Development Kit.

exclusive access Opening a DOS file so that no other user in a multi-user environment may update the same
file.

APPENDIX G GLOSSARY

executable A standard .EXE application file capable of being launched by the Microsoft Windows shell.

expand To decompress, usually for installation purposes, a compressed file.

expression A mathematical formula containing any valid combination of variables, functions, operators,
and constants.

extension A file name suffix; up to three characters in the DOS file system. Windows 3.1 matches
document files to their application via the [Extensions] section in the WIN.INI file.

external name (Clarion) An attribute which holds the native format name (such as a DOS file name) for a
given data element. The Clarion source code refers to the file by the Clarion label.

external procedure (Clarion) A procedure contained in an external library, such as a library file linked at the time
the application is built, or a .DLL, linked at run time.

field A basic data element or category which names all the values in a column of data within a
database file or table.

field equate label (Clarion) A symbolic constant which references an integer, which references a window
control.

field event (Clarion) An event generated and processed within an ACCEPT loop, specific to a control in
a window structure.

file handle An operating system pointer to a file. The “FILES=“ line in the CONFIG.SYS file sets the
system limit on the total number of allowable open files at one time.

fill color The color designated for the inside of a graphical control.

filter An expression which isolates a subset of records for an operation.

focus A visual cue indicating the window control which will receive the next action resulting from
user input.

folder A logical container implemented by the shell, within which the user may group a collection
of items. Analogous to a file directory.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

font The family name of related type face files. For example, “Times New Roman” is the font
name, and “Times New Roman plain,” “Times New Roman Italic,” “Times New Roman
Bold,” and “Times New Roman Bold Italic” are the styles, which are stored in separate files.

font dialog A standard Windows dialog for picking a typeface, style, size, and optionally, the text color.

font style Character formatting applied to a font face, such as bold, italic, or bold italic.

foreground priority A measure, expressed in a ratio, for the amount of CPU processing time allocated to a
program or task which currently has system focus.

foreign key (SQL) A key in one table (database file) whose values match the primary key of another
table.

form A window that displays a single record for editing. By convention there is a separate entry
box for each field displayed, and fields are stacked in a vertical arrangement.

form letter A mailmerge document containing “boiler-plate” text, in which controls reference fields
from which to obtain information when creating letters to individuals.

form report style A report format generally containing one record per page, with field labels and values
arranged in a vertical format.

format string (Clarion) A string specifying the display format for a list box or drop down list box control.

formatter (Clarion) A specialized window which allows you to visually define the formatting for a data
structure in “WYSIWYG” fashion.

function (Clarion) A specialized procedure which returns a value. The function declaration may
optionally define parameters which are passed when calling the function. A function may be
used within computed or conditional fields.

GDI Abbreviation for Graphics Device Interface, the Microsoft Windows dynamic link library
responsible for outputting text and images to the screen and printer.

GIF image Graphics Interchange File format; an image format popularized by CompuServe. Generally
acknowledged to offer the best compression ration for 256 color or less images. Attention:
should you utilize the word “GIF” anywhere within an application or program, you must add
a trademark notice: “GIF (Graphics Interchange Format) is a trademark of CompuServe
Information Services.”

APPENDIX G GLOSSARY

global variable (Clarion) A variable accessible from all levels of a program. Global variables are allocated
memory that is not released until the entire program finishes execution.

graph A graphical representation of related data elements, on screen or paper.

Graphical User Interface (GUI) An operating system or program environment relying heavily on images to present
information to the user and to gather the user’s input.

grayed A visual cue to the user that the window, menu, or control is unavailable or disabled.

grid snap A series of coordinates, represented by dots, such as those used by the Clarion Window and
Report Formatters, to force controls to exact positioning.

group (Clarion) A compound data structure which allows you to reference its component variables
with a single label.

groupbox A rectangular line frame with a label at upper left, used to define related controls.

handle In Windows, an integer serving as a pointer to the memory location for a given object, most
commonly a handle to a window (HWND). The handle has approximately the same
importance to most API functions as the zip code on a first class letter. In Clarion, its
functionality is implemented via field equate labels. You can obtain the actual handle to a
window or control by examining PROP:handle. The property is read only.

help context string A unique identifier for a topic or page in a help file, which can be passed to the help engine.

help system Comprised of the Windows help application (WINHELP.EXE) and a help document (*.HLP)
distributed by individual applications. When displaying help, both the application which
called it, and WINHELP.EXE are running.

help topic A page in a Windows help document.

help compiler A utility available from Microsoft for converting a Rich-Text-Format (.RTF) document into a
Windows help (.HLP) document.

hide Prevent a control or window from displaying on screen; the control exists but is not seen by
the end user.

I-beam A special cursor usually indicating the end user can type text into an edit control.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

I/O Input/Output. The process of moving information into and out of the system.

icon A graphical representation of a physical object in the system, such as a printer. Also, any
small image representing an action, concept or program, as when an icon appears on a
command button. The normal icon file format carries the .ICO extension; one of its main
features is built-in support for transparency. This enables you to display a small picture
without obliterating the background.

IDE Integrated Development Environment; a complete compiler product which includes tools for
producing source code, creating resources, compiling, linking, and debugging an application.

identifier A label uniquely identifying a variable or other program element.

implicit variable (Clarion) A specialized variable not declared within the data structure of an application, nor
defined before its first use. The compiler creates them when it first encounters them (usually
within executable code) and automatically initializes them to zero.

import library A compile time library (.LIB) used to satisfy references to external functions that will
ultimately be resolved at runtime by a DLL.

include file An external source file read and preprocessed at compile time. In Clarion for Windows, the
Equates and other files in the LIBSRC subdirectory are the default include files.

independent entity (SQL) A set of data elements sharing a set of properties independent of other related entities
in the database. Independent entities have unique identifiers, and therefore, primary keys.

index file An external key file ordered according to the contents of a specified field or expression. An
index file usually must be manually updated when adding, deleting, or changing records.

INI file A Windows Initialization file in ASCII format. The .INI file is divided into sections separated
by an identifier enclosed in square brackets. Variables and their values follow, each pair
separated by a carriage return, with an equal sign between the variable name and its value.
Values may be stored as strings or integers.

insertion point The point in a document at which the next characters typed by the end user will appear.

interface The communication between the computer and the user; it presents information to the user
and accepts the user’s input.

ISAM Indexed Sequential Access Method; a database organization in which data files are ordered
by keys, and may be retrieved in the sequence of the keys.

APPENDIX G GLOSSARY

join A join takes two database files (or tables) and creates a new, wider table consisting of all
possible concatenated records (or rows).

JPG image A true-color graphics file format featuring 24-bit color storage. It usually provides for
adjustable lossy compression, which allows for greater compression but loss of some
resolution.

Kernel The Windows memory management, process management, and file management functions.

key An indexed file ordered according to the contents of a specified field or fields. Keys are
usually dynamically updated whenever the value in a key field changes.

key-in template picture (Clarion) A formatting option, which when combined with the MASK attribute, restricts and
verifies end user keyboard input according to a specified character pattern applied upon a
variable.

keyboard accelerator A hot-key combination which directly executes a command.

keyword A reserved word or Clarion language statement.

label (Clarion) A unique identifier for a variable, procedure, function, routine, or data structure.

library file A precompiled file (.LIB) containing procedures or functions which may be statically linked
to the executable and utilized by a program.

license file A proprietary key file distributed by a VBX vendor only to a licensed user of the VBX
library. The license file allows an IDE to incorporate the VBX control within a window or
dialog box. This file is not distributable to the end user.

list box A window control presenting data arranged in rows, and optionally, columns.

literal A constant referred to in source code by its value. For example, the literal “MyString” refers
to a seven byte data item containing ASCII codes for the letters in “MyString.”

local data Data created by, residing in memory specific to, and accessible only to a specific procedure
or function.

lock A concurrency control mechanism to prevent more than one user from updating the same
record at the same time. Within Clarion, the HOLD statement arms record locking.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

locked field or record A field or record currently being updated by one user within a multi-user database, such that
an attempt by another user to update the same record at the same time will fail.

logical operator A true/false or bitwise comparison of two values; logical operators are: =, >, <, <>, >=, <+,
NOT, AND, OR, and XOR.

lookup table A database file on one side of a one to many relation, upon which a variable is searched for,
and a corresponding field in the related table is returned.

LOOP structure (Clarion) A control structure which repeats the execution of the statements it encloses for a
specified count.

many-to-many relationship A connection between two data entities in which there may exist many corresponding values
in the foreign key in one database file or table, to many corresponding values in the foreign
key of another table. Usually implemented via a “join” file breaking them into two 1:Many
relations.

many-to-one relationship A connection between two data entities in which there may exist many corresponding values
in the foreign key in one database file or table, to only one value in the primary key of
another “look-up” table. The relationship implicitly describes the direction of the relation.
For example, the relation of cities to states implies many cities may belong to the same state.
Also called a child-parent relation.

MASK (Clarion) Specifies pattern editing of user input, converting data to a predefined format. The
pattern is specified for an individual control, and enabled when the MASK attribute is added
to the window in which the control appears.

maximize box A window control which resizes a window to full size of the desktop, or if a child window, to
the full size of the client area of the application window.

Media Control Interface The multimedia API support component of Microsoft Windows. Managed by the
MMSYSTEM.DLL library and related driver files; abbreviated as MCI.

memo A free-form, variable length text field, suitable for storing very long strings. In most PC file
formats, the memo is stored in a file separate from the fixed-length database fields. A binary
memo field is a specialized type of memo field suitable for storing binary information such
as graphics.

menu An element of the user interface listing available actions which the end user may effect upon
a document or selected portion of a document.

message box A standard windows element, usually consisting of a short message string, an OK button,
often a standard icon such as “stop” or “information.” It may optionally contain additional
buttons such as “Cancel,” and “Retry.”

APPENDIX G GLOSSARY

message queue The “place” in which Windows holds all messages for an application, which the application
checks on a regular basis. The messages consist of everything the application needs to know
regarding the user interface—keyboard, mouse and menu events; the system—shutdown
messages, and all the other operations which may affect the application. Clarion processes
the entire messaging process transparently in the ACCEPT loop.

metafile In Windows, the representation of a graphic or line art in vector (device independent) format;
defines the image as a series of lines and curves, allowing for smooth resizing. Clarion for
Windows supports the .WMF (Windows Metafile) vector format. The metafile is actually a
stored collection of the commands which instruct the GDI (Windows Graphics Device
Interface) to display the graphic on the output device.

minimize box A window control which resizes a window to iconic size, usually at the bottom of the
desktop, or if a child window, to iconic size, usually at the bottom of the application window.

mnemonic access key The underlined letter in the command names on Microsoft Windows menus. When a user
activates a pull down menu, the key executes the command.

modal window A dialog or window which prevents the end user from activating controls from any other of
the application’s windows (or of any other application, if system modal), until processing of
the modal window is completed and the window closed.

modeless dialog A dialog which remains open even while the user “works” in another of the application’s
document windows. The modeless dialog remains available, so that the user can utilize its
functionality; as in a Search dialog, as practiced by most applications.

module (Clarion) A source or library file for a given project.

multi-tasking The capability of an operating system to execute multiple programs at the same time.
Preemptive multi-tasking allots percentages of CPU time to each individual task, with the
operating system automatically switching to the next task at the end of its time allotment.
Cooperative multi-tasking, supported by Windows 3.1, relies upon the currently executing
program to finish a task, or part of one, then yield to the next program. See also Thread.

multiple selection An extended list box selection, signifying the user has marked more than one item for a
subsequent action.

multilevel index To speed up access to a rage table or data file, a multilevel index functions as an index to an
index. For example, index level one could contain pointers to four subindexes which
respectively index entries beginning with A-E, F-L, M-R, and S-Z. This example describes a
classic B-TREE index structure.

Multiple Document Interface (MDI) A Windows programming convention which allows an application to manage several
documents, or views of documents, each in its own child window, all in an application frame
window.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

multi-user database A database system designed so that more than one user can access a file or record at the same
time. The system requires concurrency checking so that two users don’t attempt to update the
same record at the same time.

natural join (SQL) A join which takes two database files (or tables) and creates a new, wider table
consisting of all possible concatenated records (or rows), where the new table contains two
identical columns, one of which is dropped.

nested queries (SQL) A single query consisting of both an outer and inner query. Allows for more efficient
retrieval of data from large tables by combining multiple operations into one.

nesting Placing one operation inside another, such as nesting a function within another by specifying
the nested function as a parameter of the first.

non-Windows application Any application which doesn’t require the Windows environment. Typically, a DOS program.

normalization The representation of data entities in their simplest forms, for the purpose of quickest access
and most efficient storage. The normalization process includes the elimination of redundant
data groups, and the elimination of redundant data elements.

null value A zero or empty value.

ODBC The Open Database Connectivity standard supported by many Windows applications.
Provides a standard API for accessing multiple database file formats via replaceable file
drivers, and Client/Server support. The ODBC SDK is published by Microsoft.

ODBC Administrator A redistributable Microsoft application for adding, maintaining or deleting individual ODBC
drivers within a system. Usually located in the Windows\System directory, the executable file
name is ODBCADM.EXE.

ODBC Control Panel applet A Windows Control Panel interface to the ODBC administrator.

ODBC driver A driver library containing the individual functions supporting standard ODBC calls for a
particular file format.

one-to-many relationship A connection between two data entities in which there may exist one corresponding value in
the primary key of one database file or table, to many identical values in the foreign key of
another table. The relationship implicitly describes the direction of the relation. For example,
the relation of states to cities implies a state may have many cities. Also called a parent-child
relation.

APPENDIX G GLOSSARY

one-to-one relationship A connection between two data entities in which there may exist one and only one
corresponding value in the primary key of one database file or table, to a single identical
value in the foreign key of another table. For example, the relation of customer name to
internet address. The data is usually split into two separate tables for storage savings; all
customers have names, but only a minority have internet addresses.

option structure (Clarion) A structure containing mutually exclusive controls, such as radio buttons.

origin The upper left corner of a window or control, expressed in x,y coordinates (0,0).

orphan A portion of text or data separated from its complementary preceding data by a page break.

outer join (SQL) A join which includes all records from one database file, and only those records from
another in which the values in a selected field (or fields) match those in the first.

overlay (Clarion) A variable or field sharing the same location as another. Acts as a data “re-
declaration, and provides more efficient storage. Most useful in “either/or” situations when a
variable and its overlay are of similar types but utilize different pictures.

page footer The section of a report composed after the last detail that will fit on a page has been
composed.

page header The section of a report composed before the first detail to print on a page.

page overflow In Clarion, the point at which the report library composes enough data to complete a page;
the library will either send the page to the Windows spooler at that point, or first check to
verify there are no “widows,” if the application so specifies.

palette The table of available colors which a given window may user for painting.

parameter An argument or optional variable passed to a procedure.

PCX image A standard graphics file format, offering moderate compression, originally developed by the
Zsoft corporation. The Windows Paintbrush accessory supports this format.

pel Equivalent to pixel; abbreviation for picture element. The smallest screen unit addressed in
graphic mode; a dot.

pen In Windows, the active drawing or painting element; you can set its color, size, etc.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

picture token (Clarion) A formatting string, which specifies a specific “picture” or masking format for
displaying and editing variables. The picture token begins with the “@” character.

pixel Equivalent to pel; abbreviation for picture element. The smallest screen unit addressed in
graphic mode; a dot.

point size A measurement expressed in points; one point equals 1/72nd inch, or 1/28 centimeter.

pointer The mouse cursor. Or, an index entry which locates or “points” to the corresponding data
record.

popup menu A menu that appears disconnected from other visual elements. Windows 95 and Clarion
frequently displays popup menus when the user clicks the right mouse button. By
convention, the menu is associated with the item clicked on.

prefix (Clarion) A short identifying string for a data structure. Provides a method for resolving
variable names when, for example, two database files include fields whose names are the
same.

primary key (SQL) A database field or expression which uniquely identifies each record in the table or
database file.

print job One complete task sent to the Windows print spooler (accessible from Print Manager).

print structure (Clarion) The parts of a report structure, which include the group break structure, detail,
header, footer, and form.

printer driver An external library file containing low level instructions and functions by which the
Windows GDI library sends specific commands to the printer.

printer font A typeface resident in the printer’s RAM.

procedure (Clarion) A set of executable statements which may be executed repeatedly.

progress bar (Clarion) A control that displays a graphic representation of a dynamic value by
progressively coloring in a rectangle as the value changes.

program MAP (Clarion) The “layout” of modules, procedures and functions, which the compiler uses to
logically assemble the file. The MAP structure contains the prototypes which declare the
functions, procedures, and external source modules used in a PROGRAM or MEMBER
module.

APPENDIX G GLOSSARY

project system (Clarion) The IDE component which tracks the modules which comprise the application to
be built, including source code and external libraries. The Project System also stores the
various pragma, compiler and linking options.

prompt A text label which normally appears near a screen control, to identify the control.

property (Clarion) An attribute of a window, control, or other Clarion object.

property assignment syntax (Clarion) Specific language format for setting or retrieving the value of a control property.

property sheet A dialog intended to allow the convenient grouping of closely related items in a single place.

prototype To define the parameter(s) and return data types for a procedure or function. Within Clarion,
prototypes are defined within the MAP structure.

PUT statement (Clarion) A statement which executes an update to a given record, and writes it to disk.

query (SQL) An operation upon a database table which results in another table or subset of the first.

Query by Example A query built by “filling-in the blanks” in a form representing the fields in a database table.
The end user types in “example elements” which represent the possible answers to the query.

queue (Clarion) A specialized memory structure containing a doubly-linked list of values.

RAD (Rapid Application Development) The construction of applications accelerated by the use of
development management tools such as data dictionaries, and the reuse of programs and
code wherever possible.

radio button A control for eliciting a mutually exclusive choice from an end user.

range constraint A bounds for a database operation limiting the operation to a set of records for which a given
field falls within specified starting and ending values.

raster font A bitmapped typeface, stored as a pattern of dots.

read only (Clarion) A field or variable which is displayed but not modified.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

RECORD (Clarion) A data structure representing one row in a database table.

redirection file (Clarion) A list of alternate subdirectories to search for source code, object or library files.

reference variable (Clarion) An indirection to another data variable (the target). The reference variable label can
substitute for the target variable anyplace in executable code. Depending upon the target data
type, the reference variable may contain the address in memory of the target, or a more
complex internal data structure.

referential integrity The process by which an application “follows through” on an update to a key field in one
file, to check its related record in another file. This maintains valid parent-child relationships
within the database. The Application Generator can automatically generate the executable
code to support referential integrity constraints when you select options in the Relate dialog.

region A specialized control whose sole function is to provide a reference for a screen area in x,y
coordinates.

registry (Clarion) A specialized initialization file storing values and parameters in binary format.
These come from the Templates and are used by the Application Generator.

relationship A logical link between records in data files based upon a duplicate (linking) field.

report form (Clarion) A report element defined once, when first composing the report, then printed on all
pages of the report.

resource file An external file containing data for a window control, such as an icon file.

restore button A window control which resizes a window from a maximized state to the last size prior to
maximizing.

rich text format (RTF) A common word processing file format, originally designed for transportability between
word processing systems across different operating systems. The default format for the
source document for the Windows help file format.

ROLLBACK (Clarion) To restore an earlier state of a database, undoing the effect of one or more active
transactions. Restores data held in a temporary file managed by the file driver.

ROUTINE (Clarion) A series of executable statements local to a procedure or function. Following
execution of the ROUTINE, program control returns to the calling procedure or function.

APPENDIX G GLOSSARY

run time library A dynamic link library providing essential support for basic application functions. For
example, the Clarion runtime library provides all the “housekeeping” functions such as
checking message queues, and managing the allocation and deallocation of all device
contexts (for windows and reports).

schema The map or catalog of a database describing its files or tables, fields, and relations.

scope A range of records selected for a given operation. Also, the “boundaries” beyond which a
given variable is unavailable to another procedure or function.

scroll bar Standard window control for changing the view of data within a window, displaying more of
a document or application controls than currently visible.

SDK Software Development Kit.

select To indicate to the system that the next command should act upon an on screen object, by
placing the mouse cursor over it and pressing the left mouse button.

SELECT statement (SQL) A statement setting the fields and tables for viewing, and for subsequent operations.

SELECT statement (Clarion) Sets the next control to receive input focus.

selected event An event generated and sent to the ACCEPT loop when a control obtains focus.

sequential access The ability to manipulate all the records in a database file or table in the sequence defined by
the key or index.

server A remote computer providing data storage or services to other linked computers.

SET statement A Clarion language statement preparing a file for sequential processing upon a group of
records.

SHARE.EXE The MS-DOS executable responsible for supporting multi-user access to a single file.

sheet (Clarion) A control that contains multiple tab controls. Designed to display multiple related
“pages” of controls. See also property sheet.

sort Physically rearrange all database records in a specified order, and store the results in a new
database file or table.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

source code file (Clarion) A text file containing Clarion language statements in a structured format, which the
compiler can compile and link into an executable program.

spin control A specialized edit box control, with two “increaser” and “decreaser” controls, linked to an
array of values. When the end user increases or decreases the control, it updates to display
the next value in the array.

SQL Structured Query Language; a database language for maintaining a relational database; most
often utilized in mainframe and client/server applications.

stack memory A portion of memory which usually stores the most recent parameter data utilized by
procedures and commands executed by a program or application.

statement A single executable command.

static text A window control which displays a string constant, and never receives focus; primarily used
for labeling other controls or displaying information and instructions.

static variable (Clarion) A persistent variable, which maintains its value from one use within a procedure to
the next.

status bar An area of a window, usually found at the bottom, in which the program can display prompts
and information.

standard behavior (STD) (Clarion) A predefined set of operations associated with a menu command; the actions
are automatically supported by the run-time library, without requiring specific code on the
part of the application.

stream mode A special mode for several of the Clarion database drivers which optimizes file input/output.

swap file A system file maintained by Windows for maintaining virtual memory as required by the
system.

syntax A rule specifying the specific format of a language statement.

system colors The default colors shared by all custom Windows palettes.

system date The date maintained by the system clock.

APPENDIX G GLOSSARY

tab (Clarion) A control that defines one of several “pages” consisting of a group of other
controls. These tab “pages” are designed to be displayed in a single tabbed dialog by a sheet
control.

tab order The sequence in which each control in a window gains focus upon a TAB key press.

table (SQL) A structured collection of data, consisting of a row of fields or column headings plus
zero or more rows of data. Each row contains exactly one value for each of the fields. Within
Clarion, the table corresponds to a specific FILE, ALIAS, or VIEW structure.

tabular report A listing of data labels and their corresponding values, arranged in a row of column labels,
followed by additional rows of data arranged by column.

tag For file drivers (such as FoxPro and dBase IV) supporting multiple indexes within the same
index file, the indicator marking an individual index.

target file Indicates to the project system the name of the application or library file to be built.

task A currently executing Windows application.

template procedure (Clarion) A pre-written source code module written in the Clarion Template Language,
containing “boiler-plate” Clarion language code, instructions for processing it at code
generation, plus a user interface for gathering the customization instructions from the
developer.

text control A multi-line edit control which automatically supports word wrap.

text file An ASCII file.

text justification A paragraph alignment style which lines up the edges of the paragraph at left, right, left and
right, or centers the entire line.

third normal form A test or measure of how closely a database meets relational theory tests for data
normalization.

thread In a multi-threaded operating system such as Windows NT, the thread is the basic entity to
which the operating system allocates a slice of CPU time. The thread has access to the same
code, data, and system resources as the task (program) which started it. Clarion START
threads do not receive separate “timeslices” from Windows 3.1; the run time library “slices”
the Clarion thread and “divides” it among the Clarion START threads.

COPYRIGHT © 1995 TOPSPEED CORPORATION—DO NOT REPRODUCE

thumb The box control on a scroll bar.

timer A Windows resource which can automatically send a message to an application at pre-
defined intervals.

token A structured symbol or series of symbols, recognized and parsed by the compiler. Operators,
and variable names are examples of tokens.

toolbar A horizontal or vertically arranged group of command buttons, and/or other controls,
generally remaining accessible the entire time a program executes.

transaction The logical event during which an input or entry to a database record, held for sequential
management with other entries, is written to disk. Failure of any of the disk writes during the
transaction would compromise the integrity of the database.

tree control Displays a logically hierarchical list of items in collapsible outline format. In Clarion for
Windows, a small square filled with a plus or minus symbol, followed by a folder, represents
an expandable tree control.

untyped parameter (Clarion) Within a function prototype, specifies the data type of a parameter is to be resolved
at tun time.

USE variable (Clarion) An attribute indicating a variable whose value should display in a window or report
control.

validity check An executable code procedure which checks end user input against an expression defining
acceptable values for a given field.

VBX control A custom window control for processing end user input or displaying data.

VCR controls A set of icons designed for use in navigating a browse or list; the images on the controls
bearing a similarity to the controls on a video cassette recorder.

vector font A scalable typeface, such as a TrueType font.

vector graphic A binary file representation of a graphic or line art; defines the image as a series of lines and
curves, allowing for smooth resizing. Clarion for Windows supports the .WMF (Windows
Metafile) vector format.

view A virtual file containing selected fields from one or more related database files.

APPENDIX G GLOSSARY

virtual table A data table or view which exists in memory only, constructed from one or more tables or
data files which may exist on disk.

watch v ariable A variable designated for monitoring by the Debugger.

widow A portion of text or data separated from its complementary following data by a page break.

window frame The window boundary. Dialog window frames are not resizeable. End users can resize other
windows by dragging the frame.

window pane A specialized window which acts as a “part” of a greater window. This allows an end user to
divide an active window into separate sections which may then be scrolled independently or
in sync.

WinExec The standard Windows API function for calling another application. Supported in Clarion via
the RUN statement.

Wizard A series of dialogs that guide the user through a process, supplying defaults and limiting the
user options to only those still available after each decision point, thereby controlling and
simplifying the process from the user’s perspective.

X axis The horizontal axis. Used for locating controls; the leftmost pixel in a window is position
zero.

Y axis The vertical axis. Used for locating controls; the upper pixel in a window is position zero.

	Introduction
	WELCOME TO THE FAST T RACK FOR WINDOWS APPLICATION DEVELOPMENT
	WHAT Y OU’LL FIND IN THIS BOOK
	WHERE TO FIND MORE INFORMATION
	DOCUMENTATION CONVENTIONS
	REGISTERING T HIS PRODUCT
	TECHNICAL SUPPORT
	THE T OPSPEED FAX RETRIEVAL SYSTEM

	Setup
	SYSTEM REQUIREMENTS
	THE SETUP PROGRAM
	Starting Setup
	Setup Options

	STARTING CLARION FOR WINDOWS
	QUICK ACCESS TO FILES AND FUNCTIONS
	The Development Environment Tool Bar
	The Pick List

	Development Flow
	CLARION PROGRAMMING
	Template Driven
	Procedure Templates
	Control Templates
	Code and Extension Templates

	THE DEVELOPMENT PROCESS
	CLARION’S DEVELOPMENT ENVIRONMENT
	The Dictionary Editor
	The Application Generator
	The Window Formatter
	The Report Formatter
	The Text Editor
	The Formula Editor
	The Project System
	The Debuggers

	Using the Dictionary Editor
	WHAT A DATA DICTIONARY IS
	Benefits of Using a Data Dictionary
	Dictionary Editor Functions

	OVERVIEW: CREATING A DATA DICTIONARY
	DESIGNING YOUR DICTIONARY AND Y OUR DATABASE
	Normalization
	Keys
	Relational Operations
	The Data Dictionary Editor

	OPENING THE DICTIONARY EDITOR
	ADDING FILES TO THE DICTIONARY
	A Word About Quick Load
	New File Properties

	ADDING A FILE ALIAS TO THE DICTIONARY
	ADDING A VIEW TO THE DICTIONARY
	ADDING OR MODIFYING FIELDS
	Defining Field Properties
	Data Types
	Other Attributes
	Validity Checks
	Window Controls
	Report Controls

	ADDING OR MODIFYING KEYS
	Setting Key Properties

	ADDING OR MODIFYING RELATIONS
	Setting Referential Integrity Constraints

	MANAGING Y OUR DICTIONARY
	Copying And Pasting
	Dictionary Revisions
	Dictionary Editor Setup Options

	Using the Application Generator
	CREATING THE .APP FILE
	OVERVIEW: CREATING Y OUR APPLICATION
	SPECIFYING GLOBAL PROPERTIES
	Global Data Variables
	General Application Properties
	.INI File Support
	File Control
	Individual File Overrides
	Embed Points in the Global Properties Dialog

	ADDING A PROCEDURE T O Y OUR APPLICATION
	Defining the Procedure Type
	Defining the Procedure Properties
	Defining Procedure Files
	Defining Procedure Windows
	Defining Procedure Reports
	Defining Procedure Data
	Defining LOCAL Data and MODULE Data
	Defining Calls to Other Procedures
	Defining Embedded Source Code
	Defining Procedure Formulas
	Defining Procedure Extensions

	MAINTAINING THE APPLICATION T REE
	Using the Edit Menu
	Using the Application Menu
	Using the Procedure Menu
	Using the View Tabs

	SETTING APPLICATION OPTIONS
	MAINTAINING Y OUR TEMPLATES
	Setting Template Registry Options
	Opening the Registry
	Registry Maintenance

	APPLICATION IMPORT/EXPORT COMMANDS

	Using the Procedure Templates
	WIZARDS
	Quick Start Wizard
	Application Wizard
	Browse Procedure Wizard
	Form Wizard
	Report Wizard
	Using Wizard Options

	PROCEDURE TEMPLATES
	Component Oriented Templates
	The Window Template
	The Frame Template
	The Menu Template
	The Source Template
	The Process Template
	The External Template
	The Browse Template
	Default Behavior
	Conditional Behavior
	Hot Fields
	Totaling
	Colors
	Icons
	Update Buttons Control template

	The Form Template
	The Report Template
	Range Limits
	Hot Fields
	Detail Filters

	The Viewer Template

	Using Control, Code, & Extension Templates
	ADDING CONTROL TEMPLATES
	CONTROL TEMPLATES
	BrowseBox
	Default Behavior
	Conditional Behavior
	Hot Fields
	Totaling
	Colors
	Icons

	BrowseUpdateButtons
	BrowseSelectButton
	SaveButton
	Messages and Titles
	Field Priming

	CancelButton
	CloseButton
	ASCIIBox
	ASCIIPrintButton
	ASCIISearchButton
	DOSFileLookup
	FileDrop
	Sort Fields
	Range Limits
	Colors
	Icons

	FileDropCombo
	Update Behavior-No Form
	Update Behavior-Form
	Range Limits
	Colors
	Icons

	RelationTree
	RelationTreeUpdateButtons

	CODE TEMPLATES
	InitiateThread
	CallProcedureAsLookup
	ControlValueValidation
	LookupNonRelatedRecord
	CloseCurrentWindow

	EXTENSION TEMPLATES
	DateTimeDisplay
	RecordValidation

	Using the Window Formatter
	OVERVIEW: CREATING WINDOWS
	CHOOSING A WINDOW T YPE
	Overview: Windows
	Default Window Structures
	Window
	Window with OK & Cancel
	System Modal Window
	MDI Child Window
	MDI Parent Frame

	CUSTOMIZING YOUR WINDOWS
	Window Formatter Tools
	Sample Window
	Controls Toolbox
	Fields Toolbox
	Property Toolbox
	Align Toolbox

	Window Formatter Procedures
	Using the Window Properties Dialog
	General Properties
	Extra Properties
	Help Properties
	Position Properties

	PLACING CONTROLS IN A WINDOW
	THE WINDOW FORMATTER MENUS
	Using the Popup Menu
	Using the Edit Menu
	Using the Control Menu
	Using the Alignment Menu
	Using the Menu Menu
	Using the Toolbar Menu
	Using the Populate Menu
	Using the Options Menu
	Using Preview!

	Creating Menus and Toolbars
	OVERVIEW: CREATING MDI MENUS
	Merging Menus
	Planning and Implementing the Menus

	CALLING THE MENU EDITOR
	CREATING YOUR APPLICATION’S MENU
	OTHER MENU EDITOR FUNCTIONS
	Standard Windows Commands - Std IDs
	Menu Positions and Merging Behavior
	Adding a Hot Key
	Disabling and Toggling
	Managing Your Menu

	ADDING A T OOLBAR
	Toolbar Merging
	Adding a Push Button
	Adding a “Latched” Button
	Adding a Button Group
	Preview Your Menus and Toolbars

	Setting Control Properties
	OVERVIEW: TYPES OF CONTROLS
	COMMON CONTROL ATTRIBUTES
	The USE Attribute
	The AT Attribute
	The KEY Attribute
	The ALRT Attribute
	The FONT Attribute
	Setting Control Modes
	Setting Help Attributes

	USER INTERACTIVE CONTROLS
	Setting Button Properties
	Choice Controls
	Setting Radio Button Properties
	Setting Check Box Properties
	Creating List Boxes
	Setting List Properties
	Setting Combo Box Properties
	Setting Spin Box Properties
	Setting Entry Box Properties
	Setting Text Control Properties

	NON USER INTERACTIVE CONTROLS
	Setting String Control Properties
	Setting Prompt Control Properties
	Setting Group Box Control Properties
	Setting Progress Bar Properties
	Setting Image Control Properties
	Setting Region Control Properties
	Setting Line Control Properties
	Setting Box Control Properties
	Setting Ellipse Control Properties
	Setting Property Sheet Properties
	Setting Tab Control Properties

	CUSTOM CONTROLS
	Setting Custom Control Properties
	Registering Your .VBX Custom Control Libraries
	Adding a Custom Control to a Window
	Setting Visual Basic Control Properties
	Monitoring .VBX Events

	Using the List Box Formatter
	OVERVIEW
	UNDERSTANDING THE LIST BOX FORMATTER
	The List Field Properties Dialog
	General Tab
	Field Tab

	Creating Column Groups
	Group Tab

	Creating a Group Header
	Stacking Fields Vertically
	Creating a Group Scroll Bar

	LIST BOX EVENTS AND OTHER FUNCTIONALITY
	Trapping a Double Click on a List Box
	Adding Drag and Drop Capability to the List Box

	Using the Report Formatter
	OVERVIEW: REPORT PROCESSING
	Smart Processing
	REPORT Structures
	Processing Order
	Flexibility

	OVERVIEW: THE REPORT FORMATTER
	Page Oriented Printing
	Opening the Report Formatter
	Views
	Report Formatter Tools
	Controls Toolbox
	Property Toolbox
	Align Toolbox

	Report Controls
	Variable String Controls
	Total Fields
	Graphics

	DESIGNING YOUR REPORT
	Report Types
	Positioning and Alignment

	PLACING STRUCTURES
	Form
	Header
	Footer
	Detail
	Group Breaks
	Sorting for Group Breaks

	Page Breaks

	PLACING CONTROLS IN A REPORT
	Report Formatter Tools
	Controls Toolbox
	Property Toolbox
	Align Toolbox

	Report Formatter Menus
	Popup Menu
	Edit Menu
	Controls Menu
	Alignment Menu
	Bands Menu
	View Menu
	Populate Menu
	Options Menu
	Preview!

	SETTING REPORT CONTROL PROPERTIES
	Adding Text Labels and Fields
	Multi-Line Text

	Adding Graphic Controls
	Image
	Line
	Box
	Ellipse

	Adding Specialized Controls
	List Box
	Option Box
	Radio Button
	Check Box
	Group Box
	Custom Controls

	Using the Text Editor
	OPENING THE TEXT EDITOR
	MANAGING T EXT EDITOR WINDOWS
	USING THE T EXT EDITOR T OOLS
	Using the Edit Menu
	Using The Tool Bar
	Using the Search Menu
	Using the File Menu

	CUSTOMIZING THE T EXT EDITOR
	Insertion Options
	Block Options
	Color Options
	Save Options

	EDITING ERRORS

	Using the Formula Editor
	EXPRESSION COMPONENTS
	FORMULA EDITOR TOOLS
	Formulas Dialog
	Formula Editor
	Conditionals Dialog

	CREATING AN ASSIGNMENT EXPRESSION
	CONDITIONAL EXPRESSIONS
	Creating an IF Structure
	Creating a CASE Structure
	Nesting Control Structures

	Using the Project System
	THE PROJECT MENU
	EDITING THE REDIRECTION FILE
	HAND CODED APPLICATIONS
	MAINTAINING A PROJECT
	Adding Source Code Files
	Adding Object Files and Libraries
	Adding External Resources
	Adding Other Projects
	Adding Programs to Execute

	DISTRIBUTING FILES
	SETTING THE TARGET FILE
	.LIB Files
	.DLL Files

	SETTING PROJECT FILE OPTIONS
	Global Compile and Link Options
	Global
	Debug
	Optimize
	Defines
	Link

	Individual Source Module Compile Options

	Using the Debugger
	OVERVIEW: THE DEBUGGING PROCESS
	PREPARING Y OUR PROJECTS FOR DEBUGGING
	THE 16-BIT DEBUGGER
	Starting the Debugger
	Loading the Source Files
	Setting Debugger Options
	Debugger Setup Options
	Additional Debugger Options

	The Debugger Windows
	Default Windows
	Other Windows

	Setting Break Points
	Unconditional Break Points
	Conditional Break Points

	Running the Program
	Working with Source Code
	Editing Watch Expressions
	Editing Variables at Run Time

	THE 32-BIT DEBUGGER
	Starting the Debugger
	Loading the Source Files
	Setting Debugger Options
	The Debugger Windows
	The Procedures In window
	The Globals window
	The Stack Trace window
	The Source window
	The Disassembly window
	The Memory window

	Setting Breakpoints
	Running the Program
	Editing Variables at Run Time

	Using the Database Manager
	THE DATABASE MANAGER—AN OVERVIEW
	BROWSING DATA FILES
	From the Dictionary Editor
	From the Open File Dialog
	From the Browse Database Menu Command

	CLOSING A DATA FILE
	CHANGING THE SORT ORDER
	VIEWING FILE STATISTICS
	WORKING WITH COLUMNS
	Hiding columns
	Showing Columns
	Using Reformat
	Setting Column Justification
	Setting Column Width
	Changing a Column's Display Picture
	Changing the Column Header

	WORKING WITH DATA FILES
	Navigating Through a File
	Using the Locate Command
	Search and Find Next

	USING QUERY-BY-EXAMPLE
	EDITING DATA
	Editing Records
	Adding Records
	Editing Memos
	Showing Deleted Records
	Undeleting Records
	Holding and Releasing Records
	Sending a Driver String
	Saving a File Definition as Source Code

	CONVERTING A DATA FILE
	Immediate Conversion
	Generating Source for File Conversion
	Editing Source Code to Make Field Assignments

	PRINTING DATA

	Windows Design Issues
	OVERVIEW
	DESIGN PRINCIPLES
	User Control

	EVENT DRIVEN PROGRAMMING
	WINDOWS AND WINDOW ELEMENTS
	Application Window
	MDI
	Dialog Boxes
	Buttons
	Check Boxes
	Radio Buttons
	List Boxes
	Combo Boxes
	Drop-Down Boxes
	Text Boxes
	Spin Boxes
	Static Text
	Group Boxes
	Sheets and Tabs
	Wizards
	Control Labels
	Cursors

	MENUS
	File Menu
	Edit Menu
	Help Menu
	View Menu
	Window Menu
	Accelerator Keys

	COLOR

	Database Drivers
	ASCII FILES
	Supported Data Types
	File Specifications/Maximums
	Driver Strings and SEND functions
	Unsupported Functions and Attributes
	Miscellaneous

	BASIC FILES
	Supported Data Types
	File Specifications/Maximums
	Driver Strings and SEND functions
	Unsupported Functions and Attributes
	Miscellaneous

	BTRIEVE FILES
	Data Types
	File Specifications/Maximums:
	Driver Strings and SEND functions
	Unsupported/Modified Functions and Attributes
	Miscellaneous

	CLARION FILES
	Data Types
	Maximum File Specifications:
	Driver Strings and SEND functions
	Miscellaneous
	Unsupported Functions and Attributes

	CLIPPER FILES
	Data Types
	File Specifications/Maximums
	Driver Strings and SEND functions
	Unsupported/Modified Functions & Attributes
	Miscellaneous

	dBASE III FILES
	Data Types
	File Specifications/Maximums
	Driver Strings and SEND functions
	Unsupported/Modified Functions & Attributes
	Miscellaneous

	dBASE IV FILES
	Data Types
	File Specifications/Maximums
	Driver Strings and SEND functions
	Unsupported/Modified Functions & Attributes
	Miscellaneous

	DOS FILES
	Data Types
	File Specifications/Maximums
	Driver Strings and SEND functions
	Unsupported Functions and Attributes
	Miscellaneous

	FOXPRO AND FOXBASE FILES
	Data Types
	File Specifications/Maximums
	Driver Strings and SEND functions
	Unsupported/Modified Functions & Attributes
	Miscellaneous

	TOPSPEED DATABASE FILES
	Data Types
	Maximum File Specifications
	Driver Strings and SEND functions
	Unsupported Functions and Attributes
	Miscellaneous
	Storing multiple Tables (data files) in a single DOS file.

	USING THE TOPSPEED DATABASE RECOVERY UTILITY
	Interactively
	Command Line Parameters
	Using the Utility in your Application
	Running the TopSpeed Database Recovery Utility

	ODBC
	ODBC PRO’S AND CON’S
	HOW ODBC WORKS
	ADDING ODBC SUPPORT TO YOUR APPLICATION — THE BASICS
	USING EMBEDDED SQL
	SENDING AN SQL STATEMENT
	DRIVER LIMITATIONS
	TESTING YOUR ODBC APPLICATION
	ODBC Log Files

	MISCELLANEOUS ODBC NOTES

	Getting Started With DDE
	CAPABILITIES
	STARTING THE DDE CONVERSATION — CLIENT TO SERVER
	Initializing the Conversation
	Sending DDE Commands
	Sending Data from Client to Server

	Making API Calls
	PROTOTYPING API FUNCTIONS
	LINKING API FUNCTIONS
	Windows API Functions
	Other API Functions
	The CALL Function

	Multi-Programmer Development
	ENABLING & PHYSICALLY ORGANIZING TEAM PROJECTS
	PROCEDURE ORIENTED APPROACH
	MODULE ORIENTED APPROACH
	Notes on Splitting the Project
	Notes on File Management

	SUB-APPLICATION APPROACH

	Glossary
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y

